-
-
Save niittymaa/f8483ab9113f7371fa75862de5f64223 to your computer and use it in GitHub Desktop.
A Retrieval-Augmented Generation (RAG) system for PDF document analysis using DeepSeek-R1 and Ollama.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import streamlit as st | |
from langchain_community.document_loaders import PDFPlumberLoader | |
from langchain_experimental.text_splitter import SemanticChunker | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.llms import Ollama | |
from langchain.prompts import PromptTemplate | |
from langchain.chains.llm import LLMChain | |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain | |
from langchain.chains import RetrievalQA | |
# color palette | |
primary_color = "#1E90FF" | |
secondary_color = "#FF6347" | |
background_color = "#F5F5F5" | |
text_color = "#4561e9" | |
# Custom CSS | |
st.markdown(f""" | |
<style> | |
.stApp {{ | |
background-color: {background_color}; | |
color: {text_color}; | |
}} | |
.stButton>button {{ | |
background-color: {primary_color}; | |
color: white; | |
border-radius: 5px; | |
border: none; | |
padding: 10px 20px; | |
font-size: 16px; | |
}} | |
.stTextInput>div>div>input {{ | |
border: 2px solid {primary_color}; | |
border-radius: 5px; | |
padding: 10px; | |
font-size: 16px; | |
}} | |
.stFileUploader>div>div>div>button {{ | |
background-color: {secondary_color}; | |
color: white; | |
border-radius: 5px; | |
border: none; | |
padding: 10px 20px; | |
font-size: 16px; | |
}} | |
</style> | |
""", unsafe_allow_html=True) | |
# Streamlit app title | |
st.title("Build a RAG System with DeepSeek R1 & Ollama") | |
# Load the PDF | |
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf") | |
if uploaded_file is not None: | |
# Save the uploaded file to a temporary location | |
with open("temp.pdf", "wb") as f: | |
f.write(uploaded_file.getvalue()) | |
# Load the PDF | |
loader = PDFPlumberLoader("temp.pdf") | |
docs = loader.load() | |
# Split into chunks | |
text_splitter = SemanticChunker(HuggingFaceEmbeddings()) | |
documents = text_splitter.split_documents(docs) | |
# Instantiate the embedding model | |
embedder = HuggingFaceEmbeddings() | |
# Create the vector store and fill it with embeddings | |
vector = FAISS.from_documents(documents, embedder) | |
retriever = vector.as_retriever(search_type="similarity", search_kwargs={"k": 3}) | |
# Define llm | |
llm = Ollama(model="deepseek-r1") | |
# Define the prompt | |
prompt = """ | |
1. Use the following pieces of context to answer the question at the end. | |
2. If you don't know the answer, just say that "I don't know" but don't make up an answer on your own.\n | |
3. Keep the answer crisp and limited to 3,4 sentences. | |
Context: {context} | |
Question: {question} | |
Helpful Answer:""" | |
QA_CHAIN_PROMPT = PromptTemplate.from_template(prompt) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=QA_CHAIN_PROMPT, | |
callbacks=None, | |
verbose=True) | |
document_prompt = PromptTemplate( | |
input_variables=["page_content", "source"], | |
template="Context:\ncontent:{page_content}\nsource:{source}", | |
) | |
combine_documents_chain = StuffDocumentsChain( | |
llm_chain=llm_chain, | |
document_variable_name="context", | |
document_prompt=document_prompt, | |
callbacks=None) | |
qa = RetrievalQA( | |
combine_documents_chain=combine_documents_chain, | |
verbose=True, | |
retriever=retriever, | |
return_source_documents=True) | |
# User input | |
user_input = st.text_input("Ask a question related to the PDF :") | |
# Process user input | |
if user_input: | |
with st.spinner("Processing..."): | |
response = qa(user_input)["result"] | |
st.write("Response:") | |
st.write(response) | |
else: | |
st.write("Please upload a PDF file to proceed.") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment