Last active
July 14, 2023 07:43
-
-
Save nijkah/5faf6ae356188690f353e3585d9bfc19 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from mmdet.registry import MODELS | |
from mmdet.utils import register_all_modules | |
from mmengine.config import Config | |
import torch | |
mmdet_config_path = 'configs/rtdetr/rtdetr_r18vd_dec3_8xb2-72e_coco.py' | |
model_weight_file = 'rtdetr_r50vd_6x_coco_mmdet.pth' | |
""" | |
# convert pdparams to torch tensors | |
import torch | |
import paddle | |
files = ''' | |
rtdetr_hgnetv2_l_6x_coco.pdparams | |
rtdetr_hgnetv2_x_6x_coco.pdparams | |
rtdetr_r101vd_6x_coco.pdparams | |
rtdetr_r18vd_dec3_6x_coco.pdparams | |
rtdetr_r34vd_dec4_6x_coco.pdparams | |
rtdetr_r50vd_6x_coco.pdparams | |
rtdetr_r50vd_m_6x_coco.pdparams | |
''' | |
files = files.split() | |
for f in files: | |
state_dict = paddle.load(f) | |
new_dict = dict() | |
for k, v in state_dict.items(): | |
new_dict[k] = torch.tensor(torch.tensor(v.numpy())) | |
torch.save(new_dict, f.replace('pdparams', 'pth')) | |
""" | |
ppdet_weight_path = 'rtdetr_r18vd_dec3_6x_coco.pth' | |
cfg = Config.fromfile(model_config_path) | |
register_all_modules() | |
model = MODELS.build(cfg.model) | |
model_keys = [k for k in model.state_dict().keys() if 'num_batches_tracked' not in k] | |
pretrained_weight = torch.load(ppdet_weight_path) | |
pre_keys = [k for k in pretrained_weight.keys()] | |
# convert pretrained weight to mmdet format | |
# NOTE: the order of the keys in the pretrained weight is different from the | |
# order of the keys in the model.state_dict() | |
new_weight = dict(state_dict={}) | |
backbone_conv_counts = 0 | |
norm_counts = 0 | |
prev_weight = False | |
alphabet = 'abcdefghijklmnopqrstuvwxyz' | |
for k in sorted(pretrained_weight.keys()): | |
origin_k = k | |
v = pretrained_weight[k] | |
if '_mean' in k: | |
k = k.replace('_mean', 'running_mean') | |
if '_variance' in k: | |
k = k.replace('_variance', 'running_var') | |
if 'backbone' in k: | |
prefix = 'backbone.' | |
subname = k.split('backbone.')[-1] | |
if subname.startswith('conv1.conv1_'): | |
if prev_weight and 'weight' in k: | |
prev_weight = False | |
if backbone_conv_counts in [2, 5]: | |
backbone_conv_counts += 1 | |
if subname.startswith('conv1.conv1_'): | |
subname = subname.replace('conv1.conv1_', 'stem.', 1) | |
if 'conv.weight' in subname: | |
subname = subname.replace('conv.weight', 'weight', 1) | |
if 'running_mean' in subname: | |
norm_counts += 1 | |
if 'running_var' in subname: | |
norm_counts += 1 | |
if 'norm' in subname: | |
subname = subname.replace('norm.', '', 1) | |
conv_id = str(int(subname.split('.')[1])+1 + backbone_conv_counts) | |
# subname = '.'.join([subname.split('.')[0], conv_id , *subname.split('.')[2:]]) | |
subname = '.'.join([subname.split('.')[0], str(backbone_conv_counts), *subname.split('.')[2:]]) | |
if 'weight' in subname: | |
prev_weight = True | |
backbone_conv_counts += 1 | |
k = prefix+subname | |
if 'res' in k: | |
k = k.split('.') | |
k = '.'.join([k[0], *k[2:]]) | |
k = k.replace('res', 'layer') | |
layer_id = k.split('.')[1] | |
num = str(int(layer_id[-2])-1)+'.' | |
letter = layer_id[-1] | |
alphabet_id = alphabet.index(letter) | |
layer_id = 'layer'+num+str(alphabet_id) | |
k = '.'.join([k.split('.')[0], layer_id, *k.split('.')[2:]]) | |
if 'short' in k: | |
k = k.replace('short', 'downsample') | |
k = k.replace('conv', '1') | |
k = k.replace('norm', '2') | |
# if 'backbone.layer1.0.downsample.1.weight' | |
if 'layer1.0.downsample' not in k: | |
k = k.replace('downsample.1', 'downsample') | |
if 'layer1.0.downsample' in k: | |
llayer_id = k.split('.')[-2] | |
num = str(int(llayer_id)-1) | |
k = '.'.join([*k.split('.')[:-2], num, k.split('.')[-1]]) | |
# k = k.replace('weight', '0.weight') | |
# if 'layer1.0.downsample.2' in k and 'running' in k: | |
# k = k.replace('layer1.0.downsample.2', 'layer1.0.downsample.1') | |
else: | |
k = k.replace('branch2', '') | |
sublayer_id, sublayer_type, name = k.split('.')[-3:] | |
new_sublayer_id = sublayer_type + str(alphabet.index(sublayer_id)+1) | |
k = '.'.join([*k.split('.')[:3], new_sublayer_id, name]) | |
k = k.replace('norm', 'bn') | |
if 'neck' in k: | |
if 'encoder' in k: | |
k = k.replace('self_attn', 'self_attn.attn') | |
k = k.replace('linear1', 'ffn.layers.0.0') | |
k = k.replace('linear2', 'ffn.layers.1') | |
k = k.replace('norm1', 'norms.0') | |
k = k.replace('norm2', 'norms.1') | |
else: | |
if 'bottlenecks' in k: | |
k = k.replace('conv1', 'branch_3x3') | |
k = k.replace('conv2', 'branch_1x1') | |
k = k.replace('bn', 'norm') | |
if 'input_proj' in k: | |
k = k.replace('0.0', '0.conv') | |
k = k.replace('0.1', '0.bn') | |
k = k.replace('r.0', '1.conv') | |
k = k.replace('1.1', '1.bn') | |
k = k.replace('0.weight', 'conv.weight') | |
k = k.replace('2.1', '2.bn') | |
if 'downsample' in k: | |
pass | |
if 'transformer' in k: | |
k = k.replace('transformer.input_proj', 'neck.projector.convs') | |
if 'projector' in k: | |
k = k.replace('norm', 'bn') | |
k = k.replace('transformer.decoder', 'decoder') | |
k = k.replace('self_attn', 'self_attn.attn') | |
k = k.replace('transformer.denoising_class_embed.weight', 'dn_query_generator.label_embedding.weight') | |
k = k.replace('transformer.query_pos_head', 'decoder.ref_point_head') | |
k = k.replace('transformer.enc_output.0.weight', 'memory_trans_fc.weight') | |
k = k.replace('transformer.enc_output.0.bias', 'memory_trans_fc.bias') | |
k = k.replace('transformer.enc_output.1.weight', 'memory_trans_norm.weight') | |
k = k.replace('transformer.enc_output.1.bias', 'memory_trans_norm.bias') | |
k = k.replace('linear1.bias', 'ffn.layers.0.0.bias') | |
k = k.replace('linear1.weight', 'ffn.layers.0.0.weight') | |
k = k.replace('linear2.bias', 'ffn.layers.1.bias') | |
k = k.replace('linear2.weight', 'ffn.layers.1.weight') | |
if 'decoder' in k and 'norm' in k: | |
norm_id = k.split('.')[-2] | |
num_id = str(int(norm_id[-1])-1) | |
k = '.'.join([*k.split('.')[:-2], 'norms.'+num_id, *k.split('.')[-1:]]) | |
if 'head' in k: | |
k = k.replace('transformer.dec_bbox_head', 'bbox_head.reg_branches') | |
k = k.replace('transformer.dec_score_head', 'bbox_head.cls_branches') | |
k = k.replace('transformer.enc_bbox_head.layers', 'bbox_head.reg_branches.3') | |
k = k.replace('transformer.enc_score_head', 'bbox_head.cls_branches.3') | |
if 'reg_branches' in k: | |
k = k.replace('layers.','') | |
layer_id = str(int(k.split('.')[-2])*2) | |
k = '.'.join([*k.split('.')[:-2], layer_id, *k.split('.')[-1:]]) | |
if v.dim() == 2 and 'label_embedding' not in k: | |
v = v.transpose(0, 1) | |
if k not in new_weight['state_dict']: | |
new_weight['state_dict'][k] = v | |
else: | |
print('duplicated!', k) | |
model.load_state_dict(new_weight['state_dict']) | |
torch.save(new_weight, model_weight_file) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment