Created
October 28, 2019 14:39
-
-
Save nikAizuddin/9c8d6b546eda97ee70da13d0d85a4c1b to your computer and use it in GitHub Desktop.
[Tensorflow/Keras] Example how to measure average time taken per batch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
"""Example how to measure average time taken per batch. | |
""" | |
import time | |
import numpy as np | |
import pandas as pd | |
from tensorflow.keras.models import Model | |
from tensorflow.keras.layers import Input, Dense | |
from tensorflow.keras.callbacks import Callback | |
EPOCHS = 1000 | |
BATCH_SIZE = 4 | |
class MeasureTime(Callback): | |
"""Measure average time taken per batch. | |
""" | |
def __init__(self): | |
self.time_start = None | |
self.time_batches = [] | |
self.time_epochs = [] | |
def on_train_batch_begin(self, batch, logs=None): | |
self.time_start = time.time() | |
def on_train_batch_end(self, batch, logs=None): | |
time_end = time.time() | |
self.time_batches.append(time_end - self.time_start) | |
def on_epoch_end(self, epoch, logs=None): | |
# NOTE: second to millisecond multiply by 1000 | |
batch_avgtime = np.array(self.time_batches).mean() * 1000 | |
print("EPOCH:{:04d}: {:.02f}ms per batch".format(epoch, batch_avgtime)) | |
self.time_epochs.append(batch_avgtime) | |
self.time_batches = [] | |
def on_train_end(self, logs=None): | |
epochs_avgtime = np.array(self.time_epochs).mean() | |
print("Average time taken per batch: {:.02f}ms".format(epochs_avgtime)) | |
class FFANN_XOR: | |
"""Solving XOR gate with Feed-Forward Artificial Neural Network. | |
""" | |
def __init__(self): | |
self.dataset = self._generate_xor() | |
def train_and_evaluate(self, callbacks): | |
"""Train and then evaluate | |
Parameters | |
---------- | |
callbacks : list | |
A list of ``tensorflow.keras.callbacks``. | |
""" | |
input_data = self.dataset[['input1', 'input2']].to_numpy(dtype=np.float) | |
output_data = np.reshape(self.dataset['output'].to_numpy(dtype=np.float), (-1, 1)) | |
model = self._create_model(input_data.shape[1], output_data.shape[1]) | |
model.fit( | |
input_data, | |
output_data, | |
callbacks=callbacks, | |
epochs=EPOCHS, | |
shuffle=True, | |
batch_size=BATCH_SIZE, | |
verbose=0 | |
) | |
test_loss = model.evaluate(input_data, output_data, verbose=0) | |
print('Test test_loss: {}'.format(test_loss)) | |
print('Predicted output = \n{}'.format(model.predict(input_data))) | |
print('Expected output = \n{}'.format(output_data)) | |
@staticmethod | |
def _create_model(n_inputs, n_labels): | |
"""Create a simple FFANN model. | |
Parameters | |
---------- | |
n_inputs : int | |
Number of input neurons. | |
n_labels : int | |
Number of output neurons. | |
Returns | |
------- | |
``tensorflow.keras.models.Model`` | |
The created FFANN model. | |
""" | |
input_layer = Input(shape=(n_inputs,), name='input_layer') | |
hidden_layer = Dense(n_inputs * 16, activation='sigmoid', name='hidden_layer_1')(input_layer) | |
hidden_layer = Dense(n_inputs * 16, activation='sigmoid', name='hidden_layer_2')(hidden_layer) | |
hidden_layer = Dense(n_inputs * 16, activation='sigmoid', name='hidden_layer_3')(hidden_layer) | |
output_layer = Dense(n_labels, activation='sigmoid')(hidden_layer) | |
model = Model(input_layer, output_layer, name='ffann') | |
model.compile(optimizer='adam', loss='mean_squared_error') | |
model.summary() | |
return model | |
@staticmethod | |
def _generate_xor(): | |
"""Generate XOR gate dataset. | |
Returns | |
------- | |
pd.DataFrame | |
Containing XOR gate dataset. | |
""" | |
df = pd.DataFrame(columns=['input1', 'input2', 'output']) | |
df = df.append({'input1': 0, 'input2': 0, 'output': 0}, ignore_index=True) | |
df = df.append({'input1': 1, 'input2': 0, 'output': 1}, ignore_index=True) | |
df = df.append({'input1': 0, 'input2': 1, 'output': 1}, ignore_index=True) | |
df = df.append({'input1': 1, 'input2': 1, 'output': 0}, ignore_index=True) | |
return df | |
def main(): | |
ffann = FFANN_XOR() | |
ffann.train_and_evaluate([MeasureTime()]) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment