Proof
Let $\Omega$ be finite, and let $P,Q$ be probability distributions on $\Omega$ with $|P - Q|_1 \leq \frac{1}{2}$. Denote $|P-Q|1$ by $\alpha$. Let
$H(P) = -\sum{x\in \Omega}p(x)\log p(x).$
We prove
$$
|H(P) - H(Q)| \leq \alpha \log!\left(\frac{|\Omega|}{\alpha}\right).
$$
Let $\alpha = |P - Q|_1$.