Created
May 1, 2017 19:29
-
-
Save niklio/0f6875e786f33f1811a1b1737535c093 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from torch.autograd import Variable | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import torchvision | |
import torchvision.transforms as transforms | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
]) | |
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, | |
download=True, transform=transform) | |
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, | |
shuffle=True, num_workers=2) | |
testset = torchvision.datasets.CIFAR10(root='./data', train=False, | |
download=True, transform=transform) | |
testloader = torch.utils.data.DataLoader(testset, batch_size=4, | |
shuffle=False, num_workers=2) | |
classes = ('plane', 'car', 'bird', 'cat', 'deer', | |
'dog', 'frog', 'horse', 'ship', 'truck') | |
def imshow(img): | |
img = img / 2 + 0.5 | |
npimg = img.numpy() | |
plt.imshow(np.transpose(npimg, (1, 2, 0))) | |
plt.show() | |
dataiter = iter(trainloader) | |
images, labels = dataiter.next() | |
imshow(torchvision.utils.make_grid(images)) | |
print(' '.join('%5s' % classes[labels[j]] for j in range(4))) | |
# Model definition | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(3, 6, 5) | |
self.pool = nn.MaxPool2d(2, 2) | |
self.conv2 = nn.Conv2d(6, 16, 5) | |
self.fc1 = nn.Linear(16 * 5 * 5, 120) | |
self.fc2 = nn.Linear(120, 84) | |
self.fc3 = nn.Linear(84, 10) | |
def forward(self, x): | |
x = self.pool(F.relu(self.conv1(x))) | |
x = self.pool(F.relu(self.conv2(x))) | |
x = x.view(-1, 16 * 5 * 5) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
x = self.fc3(x) | |
return x | |
net = Net() | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9) | |
for epoch in range(2): | |
running_loss = 0.0 | |
for i, data in enumerate(trainloader, 0): | |
# Create variables | |
inputs, labels = map(Variable, data) | |
# Zero parameter gradients | |
optimizer.zero_grad() | |
# Forward pass | |
outputs = net(inputs) | |
# Loss | |
loss = criterion(outputs, labels) | |
# Backprop | |
loss.backward() | |
# Optimize | |
optimizer.step() | |
# Logging | |
running_loss += loss.data[0] | |
if i % 2000 == 1999: | |
print('[%d, %5d] loss: %.3f' % | |
(epoch + 1, i + 1, running_loss / 2000)) | |
running_loss = 0.0 | |
print('Finished Training') | |
dataiter = iter(testloader) | |
images, labels = dataiter.next() | |
imshow(torchvision.utils.make_grid(images)) | |
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) | |
outputs = net(Variable(images)) | |
_, pred = torch.max(outputs.data, 1) | |
print('Predicted: ', ' '.join('%5s' % classes[pred[j][0]] | |
for j in range(4))) | |
# Result stat | |
class_correct = [0. for i in range(10)] | |
class_total = [0. for i in range(10)] | |
for data in testloader: | |
images, labels = data | |
outputs = net(Variable(images)) | |
_, pred = torch.max(outputs.data, 1) | |
c = (pred == labels).squeeze() | |
for i in range(4): | |
label = labels[i] | |
class_correct[label] += c[i] | |
class_total[label] += 1 | |
for i in range(10): | |
print('Accuracy of %5s : %2d %%' % ( | |
classes[i], 100 * class_correct[i] / class_total[i])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment