Created
April 15, 2012 08:45
-
-
Save nikz/2391127 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class GeoBoundingBox | |
| attr_accessor :lat, :lon, :distance | |
| WGS84_MAJOR_AXIS = 6378137 | |
| WGS84_MINOR_AXIS = 6356752.3142 | |
| WGS84_FLATTENING = 1 / 298.257223563 | |
| def initialize(lat, lon, distance) | |
| @lat = lat | |
| @lon = lon | |
| @distance = distance | |
| end | |
| def north_east | |
| point_from_distance_with_bearing(@lat, @lon, @distance / 2, 45) | |
| end | |
| def south_west | |
| point_from_distance_with_bearing(@lat, @lon, @distance / 2, 225) | |
| end | |
| def to_radians(degrees) | |
| degrees * Math::PI / 180 | |
| end | |
| def to_degrees(radians) | |
| radians * 180 / Math::PI | |
| end | |
| private | |
| # implementation of Vincenty formula, from: | |
| # http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html | |
| # distance is in m | |
| # bearing is in decimal degrees | |
| def point_from_distance_with_bearing(lat, lon, distance, bearing) | |
| a = WGS84_MAJOR_AXIS | |
| b = WGS84_MINOR_AXIS | |
| f = WGS84_FLATTENING | |
| s = distance; | |
| alpha1 = to_radians(bearing) | |
| sinAlpha1 = Math.sin(alpha1); | |
| cosAlpha1 = Math.cos(alpha1); | |
| tanU1 = (1 - f) * Math.tan(to_radians(lat)) | |
| cosU1 = 1 / Math.sqrt((1 + tanU1 * tanU1)) | |
| sinU1 = tanU1 * cosU1 | |
| sigma1 = Math.atan2(tanU1, cosAlpha1) | |
| sinAlpha = cosU1 * sinAlpha1 | |
| cosSqAlpha = 1 - sinAlpha * sinAlpha | |
| uSq = cosSqAlpha * (a * a - b * b) / (b * b) | |
| a2 = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq))) | |
| b2 = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq))) | |
| sigma = s / (b * a2) | |
| sigmaP = 2 * Math::PI | |
| while ((sigma - sigmaP).abs > 1e-12) do | |
| cos2SigmaM = Math.cos(2 * sigma1 + sigma) | |
| sinSigma = Math.sin(sigma) | |
| cosSigma = Math.cos(sigma) | |
| deltaSigma = b2 * sinSigma * (cos2SigmaM + b2 / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)\ | |
| - b2 / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM))) | |
| sigmaP = sigma | |
| sigma = s / (b * a2) + deltaSigma | |
| end | |
| tmp = sinU1 * sinSigma - cosU1 * cosSigma * cosAlpha1 | |
| lat2 = Math.atan2(sinU1 * cosSigma + cosU1 * sinSigma * cosAlpha1,\ | |
| (1 - f) * Math.sqrt(sinAlpha * sinAlpha + tmp * tmp)) | |
| lambda = Math.atan2(sinSigma * sinAlpha1, cosU1 * cosSigma - sinU1 * sinSigma * cosAlpha1) | |
| c = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha)) | |
| l = lambda - (1 - c) * f * sinAlpha * (sigma + c * sinSigma * (cos2SigmaM + c * cosSigma*(-1 + 2 * cos2SigmaM * cos2SigmaM))) | |
| lon2 = (to_radians(lon) + l + 3 * Math::PI) % (2 * Math::PI) - Math::PI # normalise to -180...+180 | |
| revAz = Math.atan2(sinAlpha, -tmp) # final bearing, if required | |
| [ to_degrees(lat2), to_degrees(lon2) ] | |
| end | |
| end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment