Last active
July 29, 2019 06:55
-
-
Save nilesh-tawari/344f9b87f0a0337d920448e3e549453d to your computer and use it in GitHub Desktop.
Convert vep annotated vcf file to pandas dataframe
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Mon Mar 5 14:21:42 2018 | |
@author: nilesh-tawari | |
email: [email protected] | |
GitHub: https://github.com/nilesh-tawari | |
""" | |
from __future__ import print_function | |
import os | |
import argparse | |
import numpy as np | |
import pandas as pd | |
from collections import OrderedDict | |
import gzip | |
''' | |
Convert VEP annotated VCF file in pandas dataframe | |
usage: python vepvcf_to_pandas.py -v test.vcf | |
''' | |
# Parameters | |
parser = argparse.ArgumentParser(description = 'Parse VCF output from VEP' \ | |
'to generate pandas dataframes') | |
parser.add_argument('-v', '--vcf', required=True, help='Input vep annotated vcf file name') | |
args = parser.parse_args() | |
vep_anno_vcf = os.path.abspath(args.vcf) | |
def calc_af(row, AD, AO, DP): | |
''' | |
Function to calculate AF from AO and DP columns or AD column alone | |
''' | |
try: | |
if row[AD] == '-': | |
val = float(row[AO]) / float(row[DP]) | |
else: | |
val = float(row[AD].split(',')[1]) / (float(row[AD].split(',')[0]) + float(row[AD].split(',')[1])) | |
except IndexError: | |
val = '.' | |
return val | |
def vcf_to_df(vcf_file, remove_cols = False): | |
''' | |
file -> df | |
Opens vcf file and gets comments, column names for the file and vep headers and puts data in | |
a pandas dataframe. Format column is splited based on samples. | |
''' | |
if vcf_file.endswith('.gz'): | |
vcf_file_read = gzip.open(vcf_file, 'r') | |
else: | |
vcf_file_read = open(vcf_file, 'r') | |
vcf_comments = [] | |
vep_columns = '' | |
for line in vcf_file_read: | |
if vcf_file.endswith('.gz'): | |
line = line.decode() | |
if line.startswith('#'): | |
vcf_comments.append(line) | |
if line.startswith('##') and "Format:" and "CSQ" in line: | |
vep_columns = [line[:-3].split('Format:')[1].strip().split('|')] | |
vep_columns = [item for slist in vep_columns for item in slist] | |
elif line.startswith('#CHROM'): | |
vcf_columns = [line.strip().strip('#').split('\t')] | |
vcf_columns = [item for slist in vcf_columns for item in slist] | |
vcf_file_read.close() | |
sample_ids = vcf_columns[9:] | |
df = pd.read_csv(vcf_file, sep = '\t', comment = '#', chunksize=1000, \ | |
low_memory=False, names = vcf_columns, iterator = True) | |
df = pd.concat(list(df), ignore_index=True) | |
for sample in sample_ids: | |
df_info = pd.DataFrame( | |
df.apply(lambda x: OrderedDict(zip(x['FORMAT'].split(':'), | |
x[sample].split(':'))), 1).tolist(), index = df.index) | |
# calculate AF | |
AD, AO, DP = sample + ':AD', sample + ':AO', sample + ':DP' | |
df_info = df_info.add_prefix(sample + ':') | |
df_info[sample + ':calcAF'] = df_info.apply(calc_af, args=(AD, AO, DP) , axis=1) | |
df = pd.merge(left = df, right = df_info, left_index = True, \ | |
right_index = True, how = 'outer') | |
df.fillna(value='-', inplace = True) | |
if remove_cols: | |
df.drop(sample_ids + ['FORMAT'], inplace = True, axis = 1, errors='ignore') | |
info = df.INFO.str.extractall('([^;]+)=([^;]+)') | |
info = pd.Series(info.values[:, 1], [info.index.get_level_values(0) \ | |
, info.values[:, 0]]).unstack() | |
df = pd.merge(left = df, right = info, left_index = True, \ | |
right_index = True, how = 'outer', suffixes=['', 'tag']) | |
if remove_cols: | |
df.drop(['INFO'], inplace = True, axis = 1, errors='ignore') | |
df['variant_ID'] = df.CHROM.astype(str) + '_' + df.POS.astype(str) + '_' + \ | |
df.REF.astype(str) + '/' + df.ALT.astype(str) | |
return vcf_comments, vep_columns, vcf_columns, sample_ids, df | |
def expand_csq(df, vep_columns, sort_pick=True): | |
''' | |
df -> df | |
expand VEP consequence | |
''' | |
df_tr = pd.DataFrame(df.CSQ.str.split(',', expand = True).stack().str.split('|', expand = True)) | |
df_tr.columns = vep_columns | |
if 'gnomADg' in vep_columns: | |
df_tr['MAX_AF_genomADg'] = df_tr[[col for col in vep_columns if 'gnomADg_' in col or col == 'MAX_AF']].apply(pd.to_numeric, errors='coerce').max(axis=1) | |
df_tr['MAX_AF_genomADg_pop'] = df_tr[[col for col in vep_columns if 'gnomADg_' in col or col == 'MAX_AF']].apply(pd.to_numeric, errors='coerce').replace('', np.nan).idxmax(axis=1) | |
if 'PICK' in vep_columns and sort_pick: | |
df_tr['PICK'].replace('-', 0, inplace=True) | |
df_tr['PICK'] = df_tr['PICK'].apply(pd.to_numeric) | |
df_tr.groupby(['Feature']).apply(lambda x: x.sort_values(['PICK'], ascending = False)).reset_index(drop=True) | |
df_tr['PICK'].replace({0: '-', 1: '1'}, inplace=True) | |
df_tr.index = df_tr.index.droplevel(-1) | |
df_tr.replace('', '-', inplace = True) | |
df_tr.fillna(value='-', inplace = True) | |
df_tr['ID'] = df_tr.index | |
df_all_trans = pd.merge(left = df, right = df_tr, left_index = True, \ | |
right_on = 'ID', how = 'outer', suffixes = ["", "_vep"]) | |
df_all_trans.drop(['ID_vep', 'CSQ'], inplace = True, axis = 1, errors = 'ignore') | |
df_single_trans = df_all_trans[~df_all_trans.index.duplicated()] | |
df_snv = df_single_trans.loc[df_single_trans['VARIANT_CLASS'] == 'SNV'] | |
df_indel = df_single_trans.loc[~(df_single_trans['VARIANT_CLASS'] == 'SNV')] | |
return df_single_trans, df_all_trans, df_snv, df_indel | |
vcf_comments, vep_columns, vcf_columns, sample_ids, df = vcf_to_df(vep_anno_vcf, remove_cols=True) | |
df_single_trans, df_all_trans, df_snv, df_indel = expand_csq(df, vep_columns, sort_pick=True) | |
## following dataframes are produced | |
# df: unexpanded VCF columns | |
# df_single_trans: fully expanded single transcripts vcf | |
# df_all_trans: fully expanded all transcripts vcf | |
# df_snv: df with snvs | |
# df_indel = df with indels | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
When I want to pharse annovar annatated vcf using line 85, 86:
I got stuck here.