Last active
March 1, 2023 07:43
-
-
Save nilesh-tawari/b3816925f13bf164301c5ff8c98d222f to your computer and use it in GitHub Desktop.
Pandas_cheatsheet.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
# fix SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Either of following | |
pd.options.mode.chained_assignment = None # default='warn' | |
df.is_copy = False | |
# read big csv | |
df = pd.read_csv(FILE_PATH, sep='\t', comment = '#', chunksize=1000, \ | |
low_memory=False, iterator = True, compression='gzip') | |
df = pd.concat(list(df), ignore_index=True) | |
# select rows if values in list | |
df = df.loc[df['COLUMN_NAME'].isin([LIST_PATTERN])] | |
df = df[df['COL1'].isin([LIST_PATTERN]) & df['COL2'].isin([LIST_PATTERN])] | |
# select rows if value == string | |
df = df.loc[df['COL_NAME'] == 'STRING'] | |
# select rows if not null | |
df = df[df['COL_NAME'].notnull()] | |
# select rows containing string | |
df = df[df['COL_NAME'].str.contains('STRING|STRING', na=False)] | |
# Merge concat | |
df_merged = pd.concat([df_1, df_2], ignore_index=True) | |
# merge dataframes | |
df_merged = pd.merge(df_1, df_2, left_on='COL1', right_on='COL2', how='outer', suffixes=['', '2']) | |
# working with text in column | |
df['COL_NAME'] = df.COL_NAME.str.split('.', expand=True)[0] | |
# fillna | |
df.fillna(value='-', inplace = True) | |
df['A'] = df_curated.apply( | |
lambda row: 'STRING' if row['B'] != '-' else '', | |
axis=1) | |
df['c'] = df.apply( | |
lambda row: row['a']*row['b'] if np.isnan(row['c']) else row['c'], | |
axis=1) | |
# drop columns | |
df.drop(['COL_NAMES'], axis=1, inplace=True) | |
# Sort within group | |
df = df.groupby(['COL_NAME']).apply(lambda x: x.sort_values(['COL_NAME'], ascending = False)).reset_index(drop=True) | |
# rename cols | |
df.rename(columns={'FROM_COL':'TO_COL'}, inplace=True) | |
# write csv file | |
df.to_csv('FILE_PATH', sep='\t', index=False) | |
# insert column at position | |
df.insert(idx, col_name, value) | |
# create col based on condition | |
def f(row): | |
if row['COL_1'] == '-' and row['COL2'] == 0: | |
val = 'SOME_VAL' | |
return val | |
df['COL_3'] = df.apply(f, axis=1) | |
# read excel | |
df = pd.read_excel(EXCEL, sheetname = 'SHEET1', skiprows=2, header=1) | |
# concat lists of df based on cols | |
df = pd.concat(dfs, axis=1, names=[LIST_COLS]) | |
df = df.loc[:,~df.columns.duplicated()] | |
# replace | |
df['COL'].replace('FROM', 'TO', inplace=True) | |
# drop dups | |
df.drop_duplicates(subset=['COL'], inplace=True) | |
# sort | |
df.sort_values(by=['COL'], inplace=True) | |
# from dict to df | |
df = pd.DataFrame(list(d.items()), columns=['COL1', 'COL2']) | |
# groupby and join in list | |
df = df.groupby('COL', as_index=False).aggregate(lambda x: ', '.join(list(x))) | |
df = df.groupby(['a','b']).apply(lambda x: [list(x['c']), list(x['d'])]).apply(pd.Series) | |
df.columns =['a','b','c','d'] | |
# add suffix | |
df = df.add_suffix('_some_suffix') | |
# split and stack list in a column | |
s = df['COL'].apply(pd.Series,1).stack().reset_index() | |
s.index = s.level_0 | |
del s['level_0'] | |
del s['level_1'] | |
df = df.join(s) | |
# plot histograms | |
df.hist(column='COLS', bins=50) | |
# astype | |
df['COL_3'] = df['COL_3'].astype(int, errors='ignore') | |
# apply | |
df.apply(lambda x : str(x['COL1']) + x['COL2'], 1) | |
# split col in 2 | |
df['new_col1'], df['new_col2'] = zip(*df['original_col'].apply(lambda x: x.split(': ', 1))) | |
# split list in a col to 2 cols | |
df[['COL1','COL2']] = pd.DataFrame(df.COL.values.tolist(), index= df.index) | |
# pivot | |
df = df.pivot(index='COL1', columns='COL2', values='COL3') | |
# odereddir | |
from collections import OrderedDict | |
oderded_dir = OrderedDict(zip([LIST1], [LIST2])) | |
df = pd.DataFrame.from_dict(oderded_dir,orient='index').transpose() | |
df1 = pd.concat({k: pd.Series(v) for k, v in oderded_dir.items()}) | |
# file exists | |
os.path.exists(FILE_PATH) | |
# writing excel | |
def set_format(df, worksheet1): | |
''' | |
set column width in excel sheet based on len(column) | |
df -> | |
''' | |
for i, col in enumerate(df.columns): | |
column_len = df[col].astype(str).str.len().max() | |
column_len = max(column_len, len(col)) + 2 | |
if column_len > 20: | |
column_len = len(col) +2 | |
worksheet1.set_column(i,i,column_len) | |
if not os.path.exists(FILE_NAME): | |
writer = pd.ExcelWriter(FILE_NAME, engine = 'xlsxwriter') | |
df.to_excel(writer, SHEET_NAME, index = False, startrow = 2)#, float_format ="%.2g") | |
workbook = writer.book | |
worksheet1 = writer.sheets[SHEET_NAME] | |
worksheet1.set_zoom(110) | |
set_format(df, worksheet1) | |
writer.save() | |
print('Completed writing report !!!') | |
else: | |
print('Report exists !!!') | |
#Conditional format excel: http://xlsxwriter.readthedocs.io/working_with_conditional_formats.html | |
# access API | |
import requests | |
from pandas.io.json import json_normalize | |
site = 'http://oncokb.org/api/v1/evidences/lookup?source=oncotree' | |
response = requests.get(site) | |
df = json_normalize(response.json()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Useful snippets for data analysis in pandas