Created
September 30, 2024 12:24
-
-
Save nimishbongale/8364fc5ee1e0b5df6d26cec6633f17e0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig | |
| model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4" | |
| quantization_config = AwqConfig( | |
| bits=4, | |
| fuse_max_seq_len=512, # Note: Update this as per your use-case | |
| do_fuse=True, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| device_map="auto", | |
| quantization_config=quantization_config | |
| ) | |
| prompt = [ | |
| {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."}, | |
| {"role": "user", "content": "What's Deep Learning?"}, | |
| ] | |
| inputs = tokenizer.apply_chat_template( | |
| prompt, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_tensors="pt", | |
| return_dict=True, | |
| ).to("cuda") | |
| outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) | |
| print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment