Skip to content

Instantly share code, notes, and snippets.

@nimishbongale
Created September 30, 2024 12:24
Show Gist options
  • Select an option

  • Save nimishbongale/8364fc5ee1e0b5df6d26cec6633f17e0 to your computer and use it in GitHub Desktop.

Select an option

Save nimishbongale/8364fc5ee1e0b5df6d26cec6633f17e0 to your computer and use it in GitHub Desktop.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig
model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
quantization_config = AwqConfig(
bits=4,
fuse_max_seq_len=512, # Note: Update this as per your use-case
do_fuse=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
quantization_config=quantization_config
)
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment