Skip to content

Instantly share code, notes, and snippets.

@ninely
Last active October 27, 2024 09:14
Show Gist options
  • Save ninely/88485b2e265d852d3feb8bd115065b1a to your computer and use it in GitHub Desktop.
Save ninely/88485b2e265d852d3feb8bd115065b1a to your computer and use it in GitHub Desktop.
Langchain with fastapi stream example
"""This is an example of how to use async langchain with fastapi and return a streaming response.
The latest version of Langchain has improved its compatibility with asynchronous FastAPI,
making it easier to implement streaming functionality in your applications.
"""
import asyncio
import os
from typing import AsyncIterable, Awaitable
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
from pydantic import BaseModel
# Two ways to load env variables
# 1.load env variables from .env file
load_dotenv()
# 2.manually set env variables
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = ""
app = FastAPI()
async def send_message(message: str) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatOpenAI(
streaming=True,
verbose=True,
callbacks=[callback],
)
async def wrap_done(fn: Awaitable, event: asyncio.Event):
"""Wrap an awaitable with a event to signal when it's done or an exception is raised."""
try:
await fn
except Exception as e:
# TODO: handle exception
print(f"Caught exception: {e}")
finally:
# Signal the aiter to stop.
event.set()
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
model.agenerate(messages=[[HumanMessage(content=message)]]),
callback.done),
)
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield f"data: {token}\n\n"
await task
class StreamRequest(BaseModel):
"""Request body for streaming."""
message: str
@app.post("/stream")
def stream(body: StreamRequest):
return StreamingResponse(send_message(body.message), media_type="text/event-stream")
if __name__ == "__main__":
uvicorn.run(host="0.0.0.0", port=8000, app=app)
"""This is an example of how to use async langchain with fastapi and return a streaming response."""
import os
from typing import Any, Optional, Awaitable, Callable, Union
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from langchain.callbacks.base import AsyncCallbackHandler
from langchain.callbacks.manager import AsyncCallbackManager
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
from pydantic import BaseModel
from starlette.types import Send
# two ways to load env variables
# 1.load env variables from .env file
load_dotenv()
# 2.manually set env variables
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = ""
app = FastAPI()
Sender = Callable[[Union[str, bytes]], Awaitable[None]]
class AsyncStreamCallbackHandler(AsyncCallbackHandler):
"""Callback handler for streaming, inheritance from AsyncCallbackHandler."""
def __init__(self, send: Sender):
super().__init__()
self.send = send
async def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Rewrite on_llm_new_token to send token to client."""
await self.send(f"data: {token}\n\n")
class ChatOpenAIStreamingResponse(StreamingResponse):
"""Streaming response for openai chat model, inheritance from StreamingResponse."""
def __init__(
self,
generate: Callable[[Sender], Awaitable[None]],
status_code: int = 200,
media_type: Optional[str] = None,
) -> None:
super().__init__(content=iter(()), status_code=status_code, media_type=media_type)
self.generate = generate
async def stream_response(self, send: Send) -> None:
"""Rewrite stream_response to send response to client."""
await send(
{
"type": "http.response.start",
"status": self.status_code,
"headers": self.raw_headers,
}
)
async def send_chunk(chunk: Union[str, bytes]):
if not isinstance(chunk, bytes):
chunk = chunk.encode(self.charset)
await send({"type": "http.response.body", "body": chunk, "more_body": True})
# send body to client
await self.generate(send_chunk)
# send empty body to client to close connection
await send({"type": "http.response.body", "body": b"", "more_body": False})
def send_message(message: str) -> Callable[[Sender], Awaitable[None]]:
async def generate(send: Sender):
model = ChatOpenAI(
streaming=True,
verbose=True,
callback_manager=AsyncCallbackManager([AsyncStreamCallbackHandler(send)]),
)
await model.agenerate(messages=[[HumanMessage(content=message)]])
return generate
class StreamRequest(BaseModel):
"""Request body for streaming."""
message: str
@app.post("/stream")
def stream(body: StreamRequest):
return ChatOpenAIStreamingResponse(send_message(body.message), media_type="text/event-stream")
if __name__ == "__main__":
uvicorn.run(host="0.0.0.0", port=8000, app=app)
aiohttp==3.8.4 ; python_full_version >= "3.8.1" and python_version < "3.12"
aiosignal==1.3.1 ; python_full_version >= "3.8.1" and python_version < "3.12"
anyio==3.7.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
async-timeout==4.0.2 ; python_full_version >= "3.8.1" and python_version < "3.12"
attrs==23.1.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
certifi==2023.5.7 ; python_full_version >= "3.8.1" and python_version < "3.12"
charset-normalizer==3.1.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
click==8.1.3 ; python_full_version >= "3.8.1" and python_version < "3.12"
colorama==0.4.6 ; python_full_version >= "3.8.1" and python_version < "3.12" and platform_system == "Windows"
dataclasses-json==0.5.7 ; python_full_version >= "3.8.1" and python_version < "3.12"
exceptiongroup==1.1.1 ; python_full_version >= "3.8.1" and python_version < "3.11"
fastapi==0.95.2 ; python_full_version >= "3.8.1" and python_version < "3.12"
frozenlist==1.3.3 ; python_full_version >= "3.8.1" and python_version < "3.12"
greenlet==2.0.2 ; python_full_version >= "3.8.1" and python_version < "3.12" and (platform_machine == "win32" or platform_machine == "WIN32" or platform_machine == "AMD64" or platform_machine == "amd64" or platform_machine == "x86_64" or platform_machine == "ppc64le" or platform_machine == "aarch64")
h11==0.14.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
idna==3.4 ; python_full_version >= "3.8.1" and python_version < "3.12"
langchain==0.0.181 ; python_full_version >= "3.8.1" and python_version < "3.12"
marshmallow-enum==1.5.1 ; python_full_version >= "3.8.1" and python_version < "3.12"
marshmallow==3.19.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
multidict==6.0.4 ; python_full_version >= "3.8.1" and python_version < "3.12"
mypy-extensions==1.0.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
numexpr==2.8.4 ; python_full_version >= "3.8.1" and python_version < "3.12"
numpy==1.24.3 ; python_full_version >= "3.8.1" and python_version < "3.12"
openai==0.27.7 ; python_full_version >= "3.8.1" and python_version < "3.12"
openapi-schema-pydantic==1.2.4 ; python_full_version >= "3.8.1" and python_version < "3.12"
packaging==23.1 ; python_full_version >= "3.8.1" and python_version < "3.12"
pydantic==1.10.8 ; python_full_version >= "3.8.1" and python_version < "3.12"
python-dotenv==1.0.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
pyyaml==6.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
requests==2.31.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
sniffio==1.3.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
sqlalchemy==2.0.15 ; python_full_version >= "3.8.1" and python_version < "3.12"
starlette==0.27.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
tenacity==8.2.2 ; python_full_version >= "3.8.1" and python_version < "3.12"
tqdm==4.65.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
typing-extensions==4.6.2 ; python_full_version >= "3.8.1" and python_version < "3.12"
typing-inspect==0.9.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
urllib3==2.0.2 ; python_full_version >= "3.8.1" and python_version < "3.12"
uvicorn==0.22.0 ; python_full_version >= "3.8.1" and python_version < "3.12"
yarl==1.9.2 ; python_full_version >= "3.8.1" and python_version < "3.12"
#!/usr/bin/env sh
# This script is used to test.
curl "http://127.0.0.1:8000/stream" -X POST -d '{"message": "hello!"}' -H 'Content-Type: application/json'
@neokd
Copy link

neokd commented Dec 4, 2023

@ninely i'm getting this error when trying to run with LLMChain and llamacpp. Can anyone help?

/opt/homebrew/anaconda3/lib/python3.10/site-packages/langchain/llms/llamacpp.py:352: RuntimeWarning: coroutine 'AsyncCallbackManagerForLLMRun.on_llm_new_token' was never awaited
  run_manager.on_llm_new_token(
RuntimeWarning: Enable tracemalloc to get the object allocation traceback

@aicodex
Copy link

aicodex commented Jan 8, 2024

My way: use LLamaCpp, llm.stream() and yield.

import asyncio
import os
from typing import AsyncIterable, Awaitable

import uvicorn
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from langchain.llms import LlamaCpp
from langchain.cache import InMemoryCache
from langchain.globals import set_llm_cache

set_llm_cache(InMemoryCache())

app = FastAPI()

model_path="/project/llama_data/Llama-2-7b-chat-hf/ggml-model-q4_0.gguf"

llm = LlamaCpp(
    model_path=model_path,
    n_gpu_layers=40,
    n_batch=512,
    temperature=0.1,
    verbose=True,
    n_ctx=512
)

async def request_qa_stream(question: str):
    for text in llm.stream(question):
        yield text

def request_qa(question: str):
    result = llm(question)
    return result

class QARequest(BaseModel):
    question: str

#curl "http://127.0.0.1:8000/qa/stream" -X POST -d '{"question":"who are you"}' -H 'Content-Type: application/json'
@app.post("/qa/stream")
def qa(body: QARequest):
    return StreamingResponse(request_qa_stream(body.question), media_type="text/event-stream")
    
#curl "http://127.0.0.1:8000/qa" -X POST -d '{"question":"who are you"}' -H 'Content-Type: application/json'
@app.post("/qa")
def qa(body: QARequest):
    return request_qa(body.question)

if __name__ == "__main__":
    uvicorn.run(host="0.0.0.0", port=8000, app=app)

or like this

## use agenerate and callback
async def request_qa_stream(question: str) -> AsyncIterable[str]:
    callback = AsyncIteratorCallbackHandler()
    llm.callbacks = CallbackManager(callback)
    async def wrap_done(fn: Awaitable, event: asyncio.Event):
        """Wrap an awaitable with a event to signal when it's done or an exception is raised."""
        try:
            await fn
        except Exception as e:
            # TODO: handle exception
            print(f"Caught exception: {e}")
        finally:
            # Signal the aiter to stop.
            event.set()

    # Begin a task that runs in the background.
    task = asyncio.create_task(wrap_done(
        llm.agenerate([question]),
        callback.done),
    )

    async for token in callback.aiter():
        # Use server-sent-events to stream the response
        yield f"{token}"

    await task

Maybe the second way can deal with concurrent request I guess, never test concurrent request.

@YanSte
Copy link

YanSte commented Apr 19, 2024

Hi all !

I wanted to share with you a Custom Stream Response that I implemented in my FastAPI application recently.

I created this solution to manage streaming data.

You can use Stream, Event of Langchain but I'm doing special things with the Handlers that's why I need it.

Here examples:

Fast API

@router.get("/myExample")
async def mySpecialAPI(
    session_id: UUID,
    input="Hello",
) -> StreamResponse:
    # Note: Don't write await we need a coroutine
    invoke = chain.ainvoke(..)
    callback = MyCallback(..)
    return StreamResponse(invoke, callback)

Custom Stream Response

from __future__ import annotations
import asyncio
import typing
from typing import Any, AsyncIterable, Coroutine
from fastapi.responses import StreamingResponse as FastApiStreamingResponse
from starlette.background import BackgroundTask

class StreamResponse(FastApiStreamingResponse):
    def __init__(
        self,
        invoke: Coroutine,
        callback: MyCustomAsyncIteratorCallbackHandler,
        status_code: int = 200,
        headers: typing.Mapping[str, str] | None = None,
        media_type: str | None = "text/event-stream",
        background: BackgroundTask | None = None,
    ) -> None:
        super().__init__(
            content=StreamResponse.send_message(callback, invoke),
            status_code=status_code,
            headers=headers,
            media_type=media_type,
            background=background,
        )

    @staticmethod
    async def send_message(
        callback: AsyncIteratorCallbackHandler, invoke: Coroutine
    ) -> AsyncIterable[str]:
        asyncio.create_task(invoke)

        async for token in callback.aiter():
            yield token

My Custom Callbackhandler

from __future__ import annotations
import asyncio
from typing import Any, AsyncIterator, List

class MyCustomAsyncIteratorCallbackHandler(AsyncCallbackHandler):
    """Callback handler that returns an async iterator."""
    # Note: Can be a BaseModel than str
    queue: asyncio.Queue[Optional[str]]

    # Pass your params as you want
    def __init__(self) -> None:
        self.queue = asyncio.Queue()

    async def on_llm_new_token(
        self,
        token: str,
        tags: List[str] | None = None,
        **kwargs: Any,
    ) -> None:
         self.queue.put_nowait(token)

    async def on_llm_end(
        self,
        response: LLMResult,
        tags: List[str] | None = None,
        **kwargs: Any,
    ) -> None:
          self.queue.put_nowait(None)

   # Note: Ect.. for error 

    async def aiter(self) -> AsyncIterator[str]:
        while True:
            token = await self.queue.get()
           
            if isinstance(token, str):
                yield token # Note: or a BaseModel.model_dump_json() etc..

            elif token is None:
               self.queue.task_done()
               break

https://gist.github.com/YanSte/7be29bc93f21b010f64936fa334a185f

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment