Skip to content

Instantly share code, notes, and snippets.

@nipunbatra
Last active December 14, 2015 10:09
Show Gist options
  • Save nipunbatra/5070367 to your computer and use it in GitHub Desktop.
Save nipunbatra/5070367 to your computer and use it in GitHub Desktop.
ADABoost
{
"metadata": {
"name": "AdaBoost"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"import matplotlib.pyplot as plt"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Initially we plot the training samples according to their classes on x1,x2 plane."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"train=array([[1,3],[1,1],[2,1],[2,2],[2,3],[3,3]])\n",
"y=array([1,1,-1,-1,1,-1])\n",
"bool_y=array(y==1)\n",
"x1=array([i[0] for i in train])\n",
"x2=array([i[1] for i in train])\n",
"pos_index=y==1\n",
"x1_pos=x1[pos_index]\n",
"x2_pos=x2[pos_index]\n",
"neg_index=~pos_index\n",
"x1_neg=x1[neg_index]\n",
"x2_neg=x2[neg_index]\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1')\n",
"ylabel('x2');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGA2QAgFaEBfLXEVU8BMOntjjL82NWHd\ndStxQ05r9yH3NmvX7rtt784Gm7dbJ9ldy25Xt/IEnsDNs98TJrrq6qjkAllarmRq3zAwD8JtFqDJ\nOFzfP8S5nQAZ4BoY9PU4Z85x5vrw4c2nmBfXdc11vS2GYRiIiMh1b0BfFyAiIv5BgSAiIoACQURE\nWikQREQEUCCIiEgrBYKIiAA+DASXy0VSUhJpaWntbl+yZAlxcXEkJCRw4MABX5UhIiJe8lkgrFy5\nkvj4eCwWS5ttJSUlHD9+nGPHjrF27VoWLVrkqzJERMRLPgmEmpoaSkpKePTRR2nvurfi4mKysrIA\nSE5O5uzZs9TW1vqiFBER8VKALyb9xS9+wUsvvcQ333zT7vaTJ08SGxvrfh4TE0NNTQ1RUVHu19rb\nsxARkc519wYUpu8hvPvuu0RGRpKUlHTVor67rb0AMAzD7x/PPfdcn9egOlWj6lSdlx89YXog7Nu3\nj+LiYoYPH05GRgY7d+5kwYIFHmOio6Oprq52P6+pqSE6OtrsUkREpAtMD4Tly5dTXV3N559/TlFR\nEVOmTCE/P99jTHp6uvu1srIyBg8e7HG4SEREep9PziFc6fKhoDVr1gCQnZ3NrFmzKCkpYcSIEQQF\nBbFu3Tpfl+Ezdru9r0vwiuo0T3+oEVSn2fpLnT1hMXp60MlHLBZLj4+HiYhcb3ry3unzPQQRuTaF\nh4fz1VdfXXVMKrC7h9/HjDmuRWFhYZw5c8bUOXXrChHplq+++qrTT7w4TPhkjhlzXIuPzsK4OxQI\nIiICKBBERKSVAkFERAAFgohIl82aNYuCgoK+LsN0CgQRueYMGzYMm81GSEgIQ4YM4ZFHHqGpqalb\nc+Xk5JCZmenxWklJSZvXrgUKBBG55lgsFt59910aGhr48MMP2b9/P8uWLevrsvyeAkFErmm33nor\nM2bM4J///CfFxcWMGTOGsLAwJk+ezJEjR9zjXnzxRWJiYrjpppsYNWoUO3fuZOvWrfzud79jw4YN\nhISEkJSUBFy6avn111/nwoULDB48mMOHD7vnqaurw2azUV9fD1y64WdiYiJhYWH8y7/8C4cOHerd\nBegCBYKIXJMuX61bXV3Nli1bCAkJYf78+bz88svU19cza9Ys0tLScDqdfPrpp7z66qvs37+fb775\nhm3btjFs2DBmzJjBr3/9a+bNm0dDQ4O7u6PFYsFisXDDDTcwd+5cCgsL3d/3L3/5C3a7nVtuuYUD\nBw6wcOFC/vznP3PmzBmys7NJT0+nubm5T9akM7pSWUS6zuHgOYCcnKuPy83teFtV1aUHwLBhlx5d\nneNKdvulB5fCYM6cOQQEBBAaGsrs2bMZMmQILS0tTJ06FYCnnnqKlStX8o9//INbb72VCxcucPjw\nYW6++WZuu+0297Sd3VZ6/vz5ZGdnuw9JvfXWW+4ukGvXriU7O5u7774bgAULFrB8+XLKysq49957\nvfu5epECQUS6zm4nl0snXDvlzRiT57BYLLzzzjtMmTLF/drPf/5zjzd6i8VCbGwsJ0+e5N577+WP\nf/wjOTk5HD58mPvuu4/f//73DB06tNPvZbfbOXfuHBUVFURGRvLRRx/xox/9CIATJ06Qn5/PK6+8\n4h7vdDo5depUl36e3qJDRiJyXbj11ls5ceKE+7lhGFRXV7t7sWRkZLB3715OnDiBxWLh6aefBjrv\n3mi1WnnwwQcpLCyksLCQtLQ0goKCALjtttv4z//8T7766iv3o7GxkYceeshHP2XPKBBE5Lrw4IMP\nsnnzZnbu3InT6SQvL49Bgwbx/e9/n6NHj7Jz504uXLjADTfcwKBBg7BarQAMGTKEqqqqNoeNrnw+\nf/58ioqKeOutt5g/f7779X/913/lT3/6ExUVFRiGQVNTE5s3b6axsbF3fuguUiCIyHVh5MiRrF+/\nnscff5yIiAg2b97Mpk2bCAgI4MKFCzzzzDNEREQwdOhQ6uvr+d3vfgfAAw88AMDNN9/MhAkT3PNd\nuecwceJEgoODOXXqFDNnznS/ftddd/HnP/+ZxYsXEx4eTlxcXJuGYf5E/RBEpFu8+h3Nyen5OQQz\n5rgGdbT+PXnv1B6CiIgACgQREWmlQBAREcAH5xC+/fZbUlNTuXDhAs3Nzfzwhz90n5y5zOFw8MMf\n/pDbb78dgLlz5/Lss896FqZzCCJ+rb3fUafTSX5RPn8v/zunm07j+vwzrMPvIDIokmn3TCPzoUwC\nAwOvOq8Zc1wPfHEOwScnlc+dO4fNZuPixYukpKSwYsUKUlJS3NsdDge///3vKS4u7rgwBYKIX7vy\nd7S5uZm81XkU7imkMqISV5TL8/hDC1hrrcSfjifDnsHSx5YycOBAj/nMmON64otA8MmVyjabDbj0\nH9jlchEeHt5mjN7sRa4NDQ0NpC1MozSqFNc4V/uDBoBrqItDQw9RebSSv2X+jU2vbSIkJMS0OaTn\nfBIILS0tjB8/ns8++4xFixYRHx/vsd1isbBv3z4SEhKIjo5mxYoVbcaA52Xxdrsde+t9SkTEPzQ0\nNDB9wXTKR5aDzbuvcUW42G3bzfSs6Wx/cztAj+e4nkPB4XDgcDhMmcun1yF8/fXX3Hfffbzwwgse\nb+YNDQ1YrVZsNhtbtmzhiSee4OjRo56F6ZCRiF+zWCykPpDK7uG7vX4j99AEk/7fJLDA3tv3dnuO\n1KpUtq3fdt0dPup31yGEhoZy//33s3//fo/XQ0JC3IeVZs6cidPp5MyZM74sRUTMZoPSqNLuvZED\nBEHpV6WURvZwjshS8v6U180JfK8/tds0PRDq6+s5e/YsAOfPn2f79u3uphKX1dbWuhPs8j0+2jvP\nICL+yel0wq3guqWD4/3ecIFxwcCI7NmRAFeEi0JH4aWaWg0bNoyoqCjOnTvnfu21115j8uTJPfpe\nnenv7TZND4RTp04xZcoUEhMTSU5OJi0tjalTp7JmzRrWrFkDwMaNGxk7diyJiYk8+eSTFBUVmV2G\niPhQwYYCSO3hJJ8CbU8ddktlZOWlmq7Q0tLCypUrzfkG1wnTA2Hs2LF8+OGHHDx4kI8//ph///d/\nByA7O5vs7GwA/u3f/o1//vOfHDx4kH379nHPPfeYXYaI+NCOsh0Q3cNJaoHO2w14xRXlYkf5Dvdz\ni8XCU089xYoVK/j666/bjD9y5AjTp0/n5ptvZtSoUbz99tvubf/zP/9DWloaoaGhTJw4kWeffZZJ\nkya5tz/xxBPcdttthIaGMmHCBEpLSwGuiXabulJZRLrsdNNpc949zHoHGgB1jXUeL02YMAG73c6K\nFSs8Xj937hzTp0/n4Ycfpq6ujqKiIn7+85/zySefAJf+YA0JCaG2tpY333yT/Pz8Nnc2/eijj/jq\nq6+YP38+DzzwAM3NzddEu00Fgoh0mYsenDu47Op9Z7rsIhc9p7dY+O1vf8srr7zi/gscLv0VPnz4\ncLKyshgwYACJiYn8+Mc/5u2338blcvHXv/6V3NxcBg0axOjRo8nKyvL41M5Pf/pTwsLCGDBgAL/8\n5S+5cOECn376KeBdu80rD5Ff2T/hynabFouFBQsWcMMNN1BWVmbK+nhDgSAiXWbF2vNJTP5UeUA7\nl1WNGTOG2bNn88ILL7j/yj9x4gTl5eWEhYW5H2+99Ra1tbXU19dz8eJFYmNj3XPExMR4zHn5uqnB\ngwcTFhbG119/7RE4V3Nlu82qqqo27Tbz8vI86qqpqenVdpvqqSwiXRYZFAkt9PxPSjPmaJ0nIjii\n3U25ubmMHz+epUuXAhAbG0tqairbtm1rM9blchEQEEB1dTVxcXEAVFdXu7fv3buXl156iZ07dzJm\nzBgAwsPD3XsFXWm3GRkZ2W67zV//+tdd/OHNoz0EEemyafdMg5M9nCQKMOmPX2utlWnJ09rddscd\nd/DQQw+xcuVKLBYLs2fP5ujRo6xfvx6n04nT6eT999/nyJEjWK1WfvzjH5OTk8P58+c5cuQIBQUF\n7jf6hoYGAgICuOWWW2hubua3v/0t33zzjft79fd2mwoEEemyzIcyYXcPJ/keUGlGNRB/Ov5STR34\nzW9+474mITg4mG3btlFUVER0dDRDhw7lmWeecZ+8XbVqFV9//TVDhgwhKyuLjIwM91XQM2bMYMaM\nGYwcOZJhw4Zx4403ctttt7m/T39vt6kWmiLSLZYgC9ZHrLgiun+C2bLHAqPo0cVp1jorz498nmeW\nPNPtOa7m6aef5vTp06xbt84n83dXv7t1hYhcw85ByukUONf50HY1QUpYSs/nqEth6WNLuzlBW59+\n+ikff/wxhmFQUVHBG2+84T7xe61TIIhIt216fRPJx5K7/obeBMnHk9m8bjOb39jcozk2vbbJ1Bvb\nNTQ0MHfuXIKDg5k3bx5PPfUU6enpps3vz3TISES65fLvqEcvAy/ubWSts5JSl9JxP4RuznG90SEj\nEfE7ISEhbFu/jWVxyxj70Visp6yXPk56pRawnrIy7uNxPD/yebYVbPN4IzdjDuk57SFcLxwOUIMh\nc2gtgY57KhdsKGBH+Q7qGuu4yEUCCCAiOIJpyd73VO7pHNeDftNT2QwKBJPl5Fx6SM9pLQH9jva1\nftNTWUSufWFhYZ1emSu+ExYWZvqcCgQR6RZvuxx2p+8y4P4U0fXeM7k36aSyiPhMc3MzaQvTuh4G\nAEFQPqKctIVpvXoL6OuZAkFEfCZvdV7P+y77ec/ka4kCQUR8wul0UrinsGd9l2m/Z7L4hgJBRHyi\nYEMBlRHm3L2uvZ7JYj7TA+Hbb78lOTmZxMRE4uPjeeaZ9m84tWTJEuLi4khISHC3mhORa8eOsh24\nokzorEbbnsniG6Z/ymjQoEHs2rULm83GxYsXSUlJobS0lJSUFPeYkpISjh8/zrFjxygvL2fRokW9\n2iZORHzvdNNpaL9nTde10zNZzOeTj53abJfOIDU3N+NyuQgPD/fYXlxcTFZWFgDJycmcPXuW2tpa\noqKiPMblXHHxj91ux66rQ9tyOC49OpOb6918dvv1exWu1tJUpvRdvsJ3eybLJQ6HA4c3/996wSeB\n0NLSwvjx4/nss89YtGgR8fHxHttPnjzZpmdpTU3NVQNBOtCVNx2t59VpLU1lSt/lK7TXM1na/rGc\n6+0fLO3wyUnlAQMGcPDgQWpqatizZ0+76fXdS6t1xaPItcXdd9kMV+mZLObx6aeMQkNDuf/++9m/\nf7/H69HR0R6Nq2tqaoiOjvZlKSLSy6bdMw1rrTl7CVfrmSzmMT0Q6uvrOXv2LADnz59n+/btJCUl\neYxJT0939wotKytj8ODBbQ4XiUj/lvlQJvF18Z0P9EJnPZPFHKYflDt16hRZWVm0tLTQ0tJCZmYm\nU6dOZc2aNQBkZ2cza9YsSkpKGDFiBEFBQX7Xq1REei4wMJCM1Awqj1b2qO+ytc5Khj1Dt7zuBbr9\n9fVCt2w2j9bSa83Nzfzg4R+we/ju7t2+oglST6SyrWCbqW0yr2XqmCYifmngwIE97rtsds9k6ZgC\nQUR8KiQkhO1vbif181Ss9d6dZLbWWUk9kapbX/cyBYKI+Jx6JvcPOodwvVAfYPNoLXtEPZN9Sz2V\nRUQE0EllERExgQJBREQABYKIiLRSIIiICKBAEBGRVgoEEREBFAgiItJKgSAiIoACQUREWikQREQE\nUCCIiEgrBYKIiAAKBBERaWV6IFRXVzN58mTGjBnDnXfeycsvv9xmjMPhIDQ0lKSkJJKSkli2bJnZ\nZYiISBcFmD1hYGAgf/jDH0hMTKSxsZG77rqL6dOnM3r0aI9xqampFBcXm/3tRUSkm0zfQxgyZAiJ\niYkABAcHM3r0aL788ss249TrQETEv5i+h3ClqqoqDhw4QHJyssfrFouFffv2kZCQQHR0NCtWrCA+\nPr7N1+fk5Lj/bbfbsatLlYiIB4fDgcPhMGUun3VMa2xsxG638+yzzzJnzhyPbQ0NDVitVmw2G1u2\nbOGJJ57g6NGjnoWpY5qISJf5XQtNp9PJ7NmzmTlzJk8++WSn44cPH84HH3xAeHj4/xamQBAR6TK/\naqFpGAYLFy4kPj6+wzCora11F1xRUYFhGB5hICIivc/0cwjvvfce69evZ9y4cSQlJQGwfPlyvvji\nCwCys7PZuHEjq1evJiAgAJvNRlFRkdlliIhIF/nsHEJP6ZCRiEjX+dUhIxER6Z8UCCIiAigQRESk\nlQJBREQABYKIiLRSIIiICKBAEBGRVgoEEREBFAgiItJKgSAiIoACQUREWikQREQE8HHHNJFrgdPp\nJL8on7+X/53TTadx4cKKlcigSKbdM43MhzIJDAzs6zJFekx3OxXpQHNzM3mr8yjcU0hlRCWuKJfn\nPnULWGutxJ+OJ8OewdLHljJw4MA+q1cE/LBjmhkUCNKXGhoaSFuYRmlUKa5bXJ2Ot9ZZSalLYdNr\nmwgJCemFCkXap0AQMVFDQwPTF0ynfGQ52LrwhU2QfDyZ7W9uVyhIn1EgiJikubmZHzz8A3YP3921\nMLisCVKrUtm2fpsOH0mfUIMcEZPkrc6jNKq0e2EAEASlkaXk/SnP1LpEeoMCQaSV0+mkcE+hV+cM\nrsYV4aLQUYjT6TSpMpHecdVA+Oabb/jss8/avP7xxx93+DXV1dVMnjyZMWPGcOedd/Lyyy+3O27J\nkiXExcWRkJDAgQMHuli2iPkKNhRQGVFpylyVkZUUbCgwZS6R3tJhIPzlL39h1KhRzJ07lzFjxlBR\nUeHelpWV1eGEgYGB/OEPf+Dw4cOUlZXx6quv8sknn3iMKSkp4fjx4xw7doy1a9eyaNEiE34UkZ7Z\nUbbj0kdLTeCKcrGjfIcpc4n0lg4D4b/+67/44IMPOHjwIOvWrWPBggX89a9/7XTCIUOGkJiYCEBw\ncDCjR4/myy+/9BhTXFzsDpXk5GTOnj1LbW1tT34OkR473XTavIOoA6Cusc6kyUR6R4dXKrtcLoYO\nHQrAxIkT2bVrF7Nnz6a6utrryauqqjhw4ADJycker588eZLY2Fj385iYGGpqaoiKivIYl5OT4/63\n3W7Hbrd7/b1FusqFOXsHl13koqnzibTH4XDgcDhMmavDQLjpppv47LPPuOOOOwAYOnQou3bt4kc/\n+hGHDx/udOLGxkZ+8pOfsHLlSoKDg9ts/+7HoiwWS5sxVwaCiK9ZsZo6X4DuDCO94Lt/LOfm5nZ7\nrg53kP/7v/+blpYWKiv/9yTbTTfdxNatW3n99devOqnT6WTu3Lk8/PDDzJkzp8326Ohojz2Nmpoa\noqOju1O/iGkigyKhxaTJWiAiOMKkyUR6R4eBkJiYSFxcHA8++CAvvvgihmFw7tw5fvnLX/Lqq692\nOKFhGCxcuJD4+HiefPLJdsekp6eTn58PQFlZGYMHD25zuEikt027ZxrWWnP2Eqy1VqYlTzNlLpHe\n0umVyk1NTTz99NPs37+fxsZG5s+fz69+9SsGDGg/S0pLS7n33nsZN26c+zDQ8uXL+eKLLwDIzs4G\nYPHixWzdupWgoCDWrVvH+PHjPQvTlcrSy5xOJ3fNu4tD4w71eK6xH43lgw0f6C6o0ut68t7Z6UHO\ngIAAbrzxRs6fP8+3337L7bff3mEYAKSkpNDS0vl+96pVq7pWqYiPBQYGkpGaQeXRSlwR3T/BbK2z\nkmHPUBhIv9Pph+wmTpzIoEGD2L9/P3v37uWtt97igQce6I3aRHrd0seWknI6Bc51c4ImSKlLYelj\nS02tS6Q3dHrI6P333+fuu+/2eC0/P58FCxb4tjAdMpI+0tDQwPSs6ZTH6W6n0v/obqciJlM/BOmv\ndLdTEZOFhISwbf02lsUtY+xHY7Gesrb9SGoLWE9ZGffxOJ4f+TzbCrYpDKRf0x6CSCecTicFGwrY\nUb6DusY6LnKRAAKICI5gWrJ6Kot/0SEjEREBdMhIRERMoEAQERFAgSAiIq0UCCIiAigQRESklQJB\nREQABYKIiLRSIIiICKBAEBGRVgoEEREBFAgiItJKgSAiIoACQUREWvkkEH72s58RFRXF2LFj293u\ncDgIDQ0lKSmJpKQkli1b5osyRESkCwJ8MekjjzzC448/ftU2m6mpqRQXF/vi24uISDf4ZA9h0qRJ\nhIWFXXWMeh2IiPgXn+whdMZisbBv3z4SEhKIjo5mxYoVxMfHtxmXk5Pj/rfdbsdut/dekSIi/YDD\n4cDhcJgyl886plVVVZGWlsahQ4fabGtoaMBqtWKz2diyZQtPPPEER48e9SxMHdNERLqs33VMCwkJ\nwWazATBz5kycTidnzpzpi1JERKRVnwRCbW2tO8EqKiowDIPw8PC+KEVERFr55BxCRkYGu3fvpr6+\nntjYWHJzc3E6nQBkZ2ezceNGVq9eTUBAADabjaKiIl+UISIiXeCzcwg9pXMIIiJd1+/OIYiIiP9R\nIIiICKBAEBGRVgoEEREBFAgiItJKgSAiIoACQUREWikQREQEUCCIiEgrBYKIiAAKBBERaaVAEBER\noI86pkkfcDhAHee6xel0kl+Uz9/L/87pptO4cGHFSmRQJNPumUbmQ5kEBgb2dZkiPaa7nV4vcnIu\nPcRrzc3N5K3Oo3BPIZURlbiiXJ771C1grbUSfzqeDHsGSx9bysCBA/usXhHo2Xun9hBE2tHQ0EDa\nwjRKo0pxjXO1P2gAuIa6ODT0EJVHK/lb5t/Y9NomQkJCerdYEZPoHILIdzQ0NDB9wXR2D9+N65YO\nwuA7XBEudv+f3UzPmk5DQ4OPKxTxDQWCyBWam5tJW5hG+chysHXxi4OgfEQ5aQvTaG5u9kl9Ir6k\nQBC5Qt7qPEqjSrseBpcFQWlkKXl/yjO1LpHeoEAQaeV0OincU+j1YaKOuCJcFDoK3X3ERfoL0wPh\nZz/7GVFRUYwdO7bDMUuWLCEuLo6EhAQOHDhgdgki3VKwoYDKiEpT5qqMrKRgQ4Epc4n0FtMD4ZFH\nHmHr1q0dbi8pKeH48eMcO3aMtWvXsmjRIrNLEOmWHWU7Ln201ASuKBc7yneYMpdIbzE9ECZNmkRY\nWFiH24uLi8nKygIgOTmZs2fPUltba3YZIl12uum0eb8RA6Cusc6kyUR6R69fh3Dy5EliY2Pdz2Ni\nYqipqSEqKqrN2JwrLqSy2+3YdaVtWw7HpUdncnO9m89uv26vaHZhzt7BZRe5aOp8Iu1xOBw4vHkP\n8EKfXJj23avoLBZLu+NydGVt57ryBq71vCorVlPnC9B1n9ILvvvHcq63f/y1o9c/ZRQdHU11dbX7\neU1NDdHR0b1dhkgbkUGR0GLSZC0QERxh0mQivaPXAyE9PZ38/HwAysrKGDx4cLuHi0R627R7pmGt\nNWcvwVprZVryNFPmEuktpu/TZmRksHv3burr64mNjSU3N9f9eezs7GxmzZpFSUkJI0aMICgoiHXr\n1pldgki3ZD6UyR//7x85NPRQj+eKPx1P5kOZJlQl0ntMD4TCwsJOx6xatcrsbyvSY4GBgWSkZlB5\ntBJXRPdPMFvrrGTYM3RLbOl3dKWyyBWWPraUlNMpcK6bEzRBSl0KSx9bampdIr1BgSByhYEDB7Lp\n9U0kH0vueig0QfLxZDa9tkl9EaRfUiCIfEdISAjb39xO6uepWOu9O8lsrbOSeiKV7W9uVz8E6bcU\nCCLtCAkJYdv6bSyLW8bYj8ZiPWVt+5HUFrCesjLu43E8P/J5thVsUxhIv6YWmtcL9VTuNqfTScGG\nAnaU76CusY6LXCSAACKCI5iWrJ7K4l968t6pQBARuYb05L1Th4xERARQIIiISCsFgoiIAAoEERFp\npUAQERFAgSAiIq0UCCIiAigQRESklQJBREQABYKIiLRSIIiICKBAEBGRVgoEEREBfBQIW7duZdSo\nUcTFxfHiiy+22e5wOAgNDSUpKYmkpCSWLVvmizJERKQLAsye0OVysXjxYnbs2EF0dDR333036enp\njB492mNcamoqxcXFZn97ERHpJtP3ECoqKhgxYgTDhg0jMDCQefPm8c4777QZp14HIiL+xfQ9hJMn\nTxIbG+t+HhMTQ3l5uccYi8XCvn37SEhIIDo6mhUrVhAfH99mrpycHPe/7XY7dnX8EhHx4HA4cDgc\npsxleiBYLJZOx4wfP57q6mpsNhtbtmxhzpw5HD16tM24KwNBRETa+u4fy7m5ud2ey/RDRtHR0VRX\nV7ufV1dXExMT4zEmJCQEm80GwMyZM3E6nZw5c8bsUkREpAtMD4QJEyZw7NgxqqqqaG5uZsOGDaSn\np3uMqa2tdZ9DqKiowDAMwsPDzS5FRES6wPRDRgEBAaxatYr77rsPl8vFwoULGT16NGvWrAEgOzub\njRs3snr1agICArDZbBQVFZldhoiIdJHF8NOP+1gsFn0SSUSki3ry3qkrlUVEBFAgiIhIKwWCiIgA\nCgQREWmlQBAREUCBICIirRQIIiICKBBERKSVAkFERAAFgoiItFIgiIgIoEAQEZFWCgQREQEUCCIi\n0kqBICIigAJBRERaKRBERARQIIiISCsFQg85HI6+LsErqtM8/aFGUJ1m6y919oRPAmHr1q2MGjWK\nuLg4XnzxxXbHLFmyhLi4OBISEjhw4IAvyugV/eV/EtVpnv5QI6hOs/WXOnvC9EBwuVwsXryYrVu3\nUllZSWFhIZ988onHmJKSEo4fP86xY8dYu3YtixYtMrsMERHpItMDoaKighEjRjBs2DACAwOZN28e\n77zzjseY4uJisrKyAEhOTubs2bPU1taaXYqIiHSFYbK3337bePTRR93PCwoKjMWLF3uMmT17tvHe\ne++5n0+dOtXYv3+/xxhADz300EOPbjy6KwCTWSwWr8Zdes/v+Ou+u11ERHzL9ENG0dHRVFdXu59X\nV1cTExNz1TE1NTVER0ebXYqIiHSB6YEwYcIEjh07RlVVFc3NzWzYsIH09HSPMenp6eTn5wNQVlbG\n4MGDiYonGhJtAAAFbUlEQVSKMrsUERHpAtMPGQUEBLBq1Sruu+8+XC4XCxcuZPTo0axZswaA7Oxs\nZs2aRUlJCSNGjCAoKIh169aZXYaIiHRVt88+mGTLli3G9773PWPEiBHGCy+80O6Yxx9/3BgxYoQx\nbtw448MPP+zlCi/prM5du3YZN910k5GYmGgkJiYazz//fK/X+MgjjxiRkZHGnXfe2eEYf1jLzur0\nh7U0DMP44osvDLvdbsTHxxtjxowxVq5c2e64vl5Tb+rs6zU9f/68MXHiRCMhIcEYPXq08atf/ard\ncX29lt7U2ddreaWLFy8aiYmJxuzZs9vd3tX17NNAuHjxonHHHXcYn3/+udHc3GwkJCQYlZWVHmM2\nb95szJw50zAMwygrKzOSk5P9ss5du3YZaWlpvV7blfbs2WN8+OGHHb7R+sNaGkbndfrDWhqGYZw6\ndco4cOCAYRiG0dDQYIwcOdIv///0pk5/WNOmpibDMAzD6XQaycnJxt69ez22+8NaGkbndfrDWl6W\nl5dnzJ8/v916urOefXrriv5yzYI3dULffzJq0qRJhIWFdbjdH9YSOq8T+n4tAYYMGUJiYiIAwcHB\njB49mi+//NJjjD+sqTd1Qt+vqc1mA6C5uRmXy0V4eLjHdn9YS2/qhL5fS7j0YZySkhIeffTRduvp\nznr2aSCcPHmS2NhY9/OYmBhOnjzZ6Ziamppeq7GjGr5bp8ViYd++fSQkJDBr1iwqKyt7tUZv+MNa\nesMf17KqqooDBw6QnJzs8bq/rWlHdfrDmra0tJCYmEhUVBSTJ08mPj7eY7u/rGVndfrDWgL84he/\n4KWXXmLAgPbfxruznn0aCGZds+Br3ny/8ePHU11dzUcffcTjjz/OnDlzeqGyruvrtfSGv61lY2Mj\nP/nJT1i5ciXBwcFttvvLml6tTn9Y0wEDBnDw4EFqamrYs2dPu/cG8oe17KxOf1jLd999l8jISJKS\nkq66t9LV9ezTQOgv1yx4U2dISIh7V3PmzJk4nU7OnDnTq3V2xh/W0hv+tJZOp5O5c+fy8MMPt/uL\n7y9r2lmd/rSmoaGh3H///ezfv9/jdX9Zy8s6qtMf1nLfvn0UFxczfPhwMjIy2LlzJwsWLPAY0531\n7NNA6C/XLHhTZ21trTuNKyoqMAyj3WOPfckf1tIb/rKWhmGwcOFC4uPjefLJJ9sd4w9r6k2dfb2m\n9fX1nD17FoDz58+zfft2kpKSPMb4w1p6U2dfryXA8uXLqa6u5vPPP6eoqIgpU6a41+6y7qyn6dch\ndEV/uWbBmzo3btzI6tWrCQgIwGazUVRU1Ot1ZmRksHv3burr64mNjSU3Nxen0+mu0R/W0ps6/WEt\nAd577z3Wr1/PuHHj3G8Ky5cv54svvnDX6g9r6k2dfb2mp06dIisri5aWFlpaWsjMzGTq1Kl+97vu\nTZ19vZbtuXwoqKfraTH84XS5iIj0OXVMExERQIEgIiKtFAgiIgIoEEREpJUCQaQbZsyYQVhYGGlp\naX1diohpFAgi3fAf//EfFBQU9HUZIqZSIIhcxfvvv09CQgIXLlygqamJO++8k8rKSqZMmdLubSxE\n+rM+vTBNxN/dfffdpKen8+yzz3L+/HkyMzPb3OxM5FqhQBDpxG9+8xsmTJjAjTfeyCuvvNLX5Yj4\njA4ZiXSivr6epqYmGhsbOX/+vPt1f7xTrEhPKBBEOpGdnc2yZcuYP38+Tz/9tPt13fVFrjU6ZCRy\nFfn5+dxwww3MmzePlpYWvv/977Nr1y6ee+45jhw5QmNjI7GxsbzxxhtMnz69r8sV6RHd3E5ERAAd\nMhIRkVYKBBERARQIIiLSSoEgIiKAAkFERFopEEREBID/D8LbSIGIhkXgAAAAAElFTkSuQmCC\n"
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we list down 8 resultant possible classifiers from the given 4 decision stumps and plot the same."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 1: x1>=1.5\n",
"hold(True)\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([1.5,1.5,1.5,1.5,1.5],[0,1,2,3,4]);\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGA2QIgFaEhfLXEVU8BMOntjjL/u1IR1\n163EO+S0tofc26xdu++2vTsbbK5bJ91dy25Xt/IEnsDNs98TJrrq6qjkAllarmRq3zQwD8JtFqDJ\nOFzfP8S5nQD5MdfADLwe58w5zlwfP7z5KPPiuq65rrfFMAwDERHp8/r1dAEiIuIfFAgiIgIoEERE\npJkCQUREAAWCiIg0UyCIiAjgw0BwuVwkJSWRlpbW6vYlS5YQFxdHQkICBw8e9FUZIiLSQT4LhFWr\nVhEfH4/FYmmxrbi4mBMnTnD8+HHWrVvHokWLfFWGiIh0kE8CoaqqiuLiYh599FFau+6tqKiIrKws\nAJKTkzl//jzV1dW+KEVERDooyBeT/vznP+ell17im2++aXX76dOniY2NdT8fOnQoVVVVREdHu19r\nbc9CRETa19UbUJi+h/Duu+8SFRVFUlLSdYv67rbWAsAwDL9/PPfccz1eQ2+qE/y/zkBZS9XZN+v0\nhumBsH//foqKihg+fDgZGRns2rWLBQsWeIyJiYmhsrLS/byqqoqYmBizSxERkU4wPRCWL19OZWUl\nn3/+OYWFhUyZMoW8vDyPMenp6e7XSktLGThwoMfhIhER6X4+OYdwrauHgtauXQtAdnY2s2bNori4\nmBEjRhASEsL69et9XYbP2O32ni6hQwKlTrD3dAHtCpS1VJ3mCpQ6vWExvD3o5CMWi8Xr42ESeCwW\n0D+7SNd5897p8z0EEemdBg0axFdffXXdManAHi+/jhlz9EYRERGcO3fO1Dl16woR6ZKvvvqq3U+8\nOEz4ZI4Zc/TGR3th3BUKBBERARQIIiLSTIEgIiKAAkFEpNNmzZpFfn5+T5dhOgWCiPQ6w4YNw2az\nERYWxuDBg3nkkUdoaGjo0lw5OTlkZmZ6vFZcXNzitd5AgSAivY7FYuHdd9+lrq6ODz/8kAMHDrBs\n2bKeLsvvKRBEpFe79dZbmTFjBv/85z8pKipizJgxREREMHnyZI4ePeoe9+KLLzJ06FBuuukmRo0a\nxa5du9i2bRu/+93v2LhxI2FhYSQlJQFXrlp+/fXXuXTpEgMHDuTIkSPueWpqarDZbNTW1gJXbviZ\nmJhIREQE//Iv/8Lhw4e7dwE6QYEgIr3S1at1Kysr2bp1K2FhYcyfP5+XX36Z2tpaZs2aRVpaGk6n\nk08//ZRXX32VAwcO8M0337B9+3aGDRvGjBkz+NWvfsW8efOoq6tzd3e0WCxYLBZuuOEG5s6dS0FB\ngfvr/uUvf8Fut3PLLbdw8OBBFi5cyJ///GfOnTtHdnY26enpNDY29siatEdXKotI5zkcPAeQk3P9\ncbm5bW87efLKA2DYsCuPzs5xLbv9yoMrYTBnzhyCgoIIDw9n9uzZDB48mKamJqZOnQrAU089xapV\nq/jHP/7BrbfeyqVLlzhy5Ag333wzt912m3va9m4rPX/+fLKzs92HpN566y13F8h169aRnZ3N3Xff\nDcCCBQtYvnw5paWl3HvvvR37vrqRAkFEOs9uJ5crJ1zb1ZExJs9hsVh45513mDJlivu1n/3sZx5v\n9BaLhdjYWE6fPs29997LH//4R3Jycjhy5Aj33Xcfv//97xkyZEi7X8tut3PhwgXKy8uJiorio48+\n4oc//CEAp06dIi8vj1deecU93ul0cubMmU59P91Fh4xEpE+49dZbOXXqlPu5YRhUVla6e7FkZGSw\nb98+Tp06hcVi4emnnwba795otVp58MEHKSgooKCggLS0NEJCQgC47bbb+K//+i+++uor96O+vp6H\nHnrIR9+ldxQIItInPPjgg2zZsoVdu3bhdDpZuXIlAwYM4Pvf/z7Hjh1j165dXLp0iRtuuIEBAwZg\ntVoBGDx4MCdPnmxx2Oja5/Pnz6ewsJC33nqL+fPnu1//6U9/yp/+9CfKy8sxDIOGhga2bNlCfX19\n93zTnaRAEJE+YeTIkWzYsIHHH3+cyMhItmzZwubNmwkKCuLSpUs888wzREZGMmTIEGpra/nd734H\nwAMPPADAzTffzIQJE9zzXbvnMHHiREJDQzlz5gwzZ850v37XXXfx5z//mcWLFzNo0CDi4uJaNAzz\nJ+qHIH5F/RACR4d+RnNyvD+HYMYcvVBb6+/Ne6f2EEREBFAgiIhIMwWCiIgAPjiH8O2335Kamsql\nS5dobGzkBz/4gfvkzFUOh4Mf/OAH3H777QDMnTuXZ5991rMwnUPok3QOIXC09jPqdDrJK8zj72V/\n52zDWVyff4Z1+B1EhUQx7Z5pZD6USXBw8HXnNWOOvsAX5xB8clL5woUL2Gw2Ll++TEpKCitWrCAl\nJcW93eFw8Pvf/56ioqK2C1Mg9EkKhMBx7c9oY2MjK9espGBvARWRFbiiXZ7HH5rAWm0l/mw8GfYM\nlj62lP79+3vMZ8YcfYkvAsEnVyrbbDbgyj+wy+Vi0KBBLcbozV6kd6irqyNtYRol0SW4xrlaH9QP\nXENcHB5ymIpjFfwt829sfm0zYWFhps0h3vNJIDQ1NTF+/Hg+++wzFi1aRHx8vMd2i8XC/v37SUhI\nICYmhhUrVrQYA56XxdvtduzN9ykREf9QV1fH9AXTKRtZBraO/R1XpIs9tj1Mz5rOjjd3AHg9R18O\nBYfDgcPhMGUun16H8PXXX3PffffxwgsveLyZ19XVYbVasdlsbN26lSeeeIJjx455FqZDRn2SDhkF\nDovFQuoDqewZvqfDb+QeGmDS/5sEFth3+74uz5F6MpXtG7b3ucNHAXcdQnh4OPfffz8HDhzweD0s\nLMx9WGnmzJk4nU7OnTvny1JExGw2KIku6dobOUAIlHxVQkmUl3NElbDyTyu7OIHvBVK7TdMDoba2\nlvPnzwNw8eJFduzY4W4qcVV1dbU7wa7e46O18wwi4p+cTifcCq5b2jje3xEuMC4ZGFHe7RK6Il0U\nOAqu1NRs2LBhREdHc+HCBfdrr732GpMnT/bqa7Un0Nttmh4IZ86cYcqUKSQmJpKcnExaWhpTp05l\n7dq1rF27FoBNmzYxduxYEhMTefLJJyksLDS7DBHxofyN+ZDq5SSfAi1PHXZJRVTFlZqu0dTUxKpV\nq8z5An2E6YEwduxYPvzwQw4dOsTHH3/Mf/zHfwCQnZ1NdnY2AP/+7//OP//5Tw4dOsT+/fu55557\nzC5DRHxoZ+lOiPFykmqg/XYDHeKKdrGzbKf7ucVi4amnnmLFihV8/fXXLcYfPXqU6dOnc/PNNzNq\n1Cjefvtt97b/+Z//IS0tjfDwcCZOnMizzz7LpEmT3NufeOIJbrvtNsLDw5kwYQIlJSUAvaLdpq5U\nFpFOO9tw1px3D7PegfpBTX2Nx0sTJkzAbrezYsUKj9cvXLjA9OnTefjhh6mpqaGwsJCf/exnfPLJ\nJ8CVX1jDwsKorq7mzTffJC8vr8WdTT/66CO++uor5s+fzwMPPEBjY2OvaLepQBCRTnPhxbmDq67f\nd6bTLnPZc3qLhd/85je88sor7t/A4cpv4cOHDycrK4t+/fqRmJjIj370I95++21cLhd//etfyc3N\nZcCAAYwePZqsrCyPT+3827/9GxEREfTr149f/OIXXLp0iU8//RToWLvNaw+RX9s/4dp2mxaLhQUL\nFnDDDTdQWlpqyvp0hAJBRDrNitX7SUz+eHFQK5dVjRkzhtmzZ/PCCy+4f8s/deoUZWVlREREuB9v\nvfUW1dXV1NbWcvnyZWJjY91zDB061GPOq9dNDRw4kIiICL7++muPwLmea9ttnjx5skW7zZUrV3rU\nVVVV1a3tNtVTWUQ6LSokCprw/ldKM+ZonicyNLLVTbm5uYwfP56lS5cCEBsbS2pqKtu3b28x1uVy\nERQURGVlJXFxcQBUVla6t+/bt4+XXnqJXbt2MWbMGAAGDRrk3ivoTLvNqKioVttt/upXv+rkN28e\n7SGISKdNu2canPZykmjApF9+rdVWpiVPa3XbHXfcwUMPPcSqVauwWCzMnj2bY8eOsWHDBpxOJ06n\nk/fff5+jR49itVr50Y9+RE5ODhcvXuTo0aPk5+e73+jr6uoICgrilltuobGxkd/85jd888037q8V\n6O02FQgi0mmZD2XCHi8n+R5QYUY1EH82/kpNbfj1r3/tviYhNDSU7du3U1hYSExMDEOGDOGZZ55x\nn7xdvXo1X3/9NYMHDyYrK4uMjAz3VdAzZsxgxowZjBw5kmHDhnHjjTdy2223ub9OoLfbVAtN8Su6\ndUXgsIRYsD5ixRXZ9RPMlr0WGIVXF6dZa6w8P/J5nlnyTJfnuJ6nn36as2fPsn79ep/M31UBd+sK\nEenFLkDK2RS40P7QVjVASkSK93PUpLD0saVdnKClTz/9lI8//hjDMCgvL+eNN95wn/jt7RQIItJl\nm1/fTPLx5M6/oTdA8olktqzfwpY3tng1x+bXNpt6Y7u6ujrmzp1LaGgo8+bN46mnniI9Pd20+f2Z\nDhmJX9Eho8Bx9WfUo5dBB+5tZK2xklKT0nY/hC7O0dfokJGI+J2wsDC2b9jOsrhljP1oLNYz1isf\nJ71WE1jPWBn38TieH/k82/O3e7yRmzGHeE97CH2FwwEB0GAoIPYQAmQtfa2tnsr5G/PZWbaTmvoa\nLnOZIIKIDI1kWnLHeyp7O0dfEDA9lc2gQDBZTs6Vh58LiEAIkLX0Nf2M9qyA6aksIr1fREREu1fm\niu9ERESYPqcCQUS6pKNdDrvSdxlwf4qor/dM7k46qSwiPtPY2EjawrTOhwFACJSNKCNtYVq33gK6\nL1MgiIjPrFyz0vu+y37eM7k3USCIiE84nU4K9hZ413eZ1nsmi28oEETEJ/I35lMRac7d61rrmSzm\nMz0Qvv32W5KTk0lMTCQ+Pp5nnmn9hlNLliwhLi6OhIQEd6s5Eek9dpbuxBVtQmc1WvZMFt8w/VNG\nAwYMYPfu3dhsNi5fvkxKSgolJSWkpKS4xxQXF3PixAmOHz9OWVkZixYt6tY2cSLie2cbzkLrPWs6\nr5WeyWI+n3zs1Ga7cgapsbERl8vFoEGDPLYXFRWRlZUFQHJyMufPn6e6upro6GiPcTnXXPxjt9ux\n6+rQlhyOK4/25OZ2bD67ve9ehau1NJUpfZev8d2eyXKFw+HA0ZH/tx3gk0Boampi/PjxfPbZZyxa\ntIj4+HiP7adPn27Rs7Sqquq6gSBt6Mybjtbz+rSWpjKl7/I1WuuZLC1/Wc7t6C8srfDJSeV+/fpx\n6NAhqqqq2Lt3b6vp9d1Lq3XFo0jv4u67bIbr9EwW8/j0U0bh4eHcf//9HDhwwOP1mJgYj8bVVVVV\nxMTE+LIUEelm0+6ZhrXanL2E6/VMFvOYHgi1tbWcP38egIsXL7Jjxw6SkpI8xqSnp7t7hZaWljJw\n4MAWh4tEJLBlPpRJfE18+wM7oL2eyWIO0w/KnTlzhqysLJqammhqaiIzM5OpU6eydu1aALKzs5k1\naxbFxcWMGDGCkJAQv+tVKiLeCw4OJiM1g4pjFV71XbbWWMmwZ+iW191At7/uKwLkls26/XXv0tjY\nyL8+/K/sGb6na7evaIDUU6lsz99uapvM3kwd00TEL/Xv39/rvstm90yWtikQRMSnwsLC2PHmDlI/\nT8Va27GTzNYaK6mnUnXr626mQBARn1PP5MCgcwh9RYD0AQ6IcwgBspb+Sj2TfUs9laXXCIhAEPFj\nOqksIiJeUyCIiAigQBARkWYKBBERARQIIiLSTIEgIiKAAkFERJopEEREBFAgiIhIMwWCiIgACgQR\nEWmmQBAREUCBICIizUwPhMrKSiZPnsyYMWO48847efnll1uMcTgchIeHk5SURFJSEsuWLTO7DBER\n6aQgsycMDg7mD3/4A4mJidTX13PXXXcxffp0Ro8e7TEuNTWVoqIis7+8iIh0kel7CIMHDyYxMRGA\n0NBQRo8ezZdfftlinHodiIj4F9P3EK518uRJDh48SHJyssfrFouF/fv3k5CQQExMDCtWrCA+Pr7F\n38/JyXH/2W63Y1eXKhERDw6HA4fDYcpcPuuYVl9fj91u59lnn2XOnDke2+rq6rBardhsNrZu3coT\nTzzBsWPHPAtTx7Q+SR3TRLzjdy00nU4ns2fPZubMmTz55JPtjh8+fDgffPABgwYN+t/CFAh9kgJB\nxDt+1ULTMAwWLlxIfHx8m2FQXV3tLri8vBzDMDzCQEREup/p5xDee+89NmzYwLhx40hKSgJg+fLl\nfPHFFwBkZ2ezadMm1qxZQ1BQEDabjcLCQrPLEBGRTvLZOQRv6ZBR36RDRiLe8atDRiIiEpgUCCIi\nAigQRESkmQJBREQABYKIiDRTIIiICKBAEBGRZgoEEREBFAgiItJMgSAiIoACQUREmikQREQE8HHH\nNJHewOl0kleYx9/L/s7ZhrO4cGHFSlRIFNPumUbmQ5kEBwf3dJkiXtPdTsWv+NPdThsbG1m5ZiUF\newuoiKzAFe3y3KduAmu1lfiz8WTYM1j62FL69+/fY/WKgB92TDODAqFv8pdAqKurI21hGiXRJbhu\ncbU73lpjJaUmhc2vbSYsLKwbKhRpnQJBeg1/CIS6ujqmL5hO2cgysHXiLzZA8olkdry5Q6EgPUb9\nEERM0tjYSNrCtM6HAUAIlI0oI21hGo2NjT6pT8SXFAgi11i5ZiUl0SWdD4OrQqAkqoSVf1ppal0i\n3UGBINLM6XRSsLegQ+cMrscV6aLAUYDT6TSpMpHucd1A+Oabb/jss89avP7xxx+3+XcqKyuZPHky\nY8aM4c477+Tll19uddySJUuIi4sjISGBgwcPdrJsEfPlb8ynIrLClLkqoirI35hvylwi3aXNQPjL\nX/7CqFGjmDt3LmPGjKG8vNy9LSsrq80Jg4OD+cMf/sCRI0coLS3l1Vdf5ZNPPvEYU1xczIkTJzh+\n/Djr1q1j0aJFJnwrIt7ZWbrzykdLTeCKdrGzbKcpc4l0lzYD4be//S0ffPABhw4dYv369SxYsIC/\n/vWv7U44ePBgEhMTAQgNDWX06NF8+eWXHmOKiorcoZKcnMz58+eprq725vsQ8drZhrPmHUTtBzX1\nNSZNJtI92rxS2eVyMWTIEAAmTpzI7t27mT17NpWVlR2e/OTJkxw8eJDk5GSP10+fPk1sbKz7+dCh\nQ6mqqiI6OtpjXE5OjvvPdrsdu93e4a8t0lkuzNk7uOoyl02dT6Q1DocDh8NhylxtBsJNN93EZ599\nxh133AHAkCFD2L17Nz/84Q85cuRIuxPX19fz4x//mFWrVhEaGtpi+3c/J2uxWFqMuTYQRHzNitXU\n+YJ0ZxjpBt/9ZTk3N7fLc7W5g/zf//3fNDU1UVHxvyfZbrrpJrZt28brr79+3UmdTidz587l4Ycf\nZs6cOS22x8TEeOxpVFVVERMT05X6RUwTFRIFTSZN1gSRoZEmTSbSPdoMhMTEROLi4njwwQd58cUX\nMQyDCxcu8Itf/IJXX321zQkNw2DhwoXEx8fz5JNPtjomPT2dvLw8AEpLSxk4cGCLw0Ui3W3aPdOw\nVpuzl2CttjIteZopc4l0l3ZvXdHQ0MDTTz/NgQMHqK+vZ/78+fzyl7+kX7/Ws6SkpIR7772XcePG\nuQ8DLV++nC+++AKA7OxsABYvXsy2bdsICQlh/fr1jB8/3rMw3bqiT+rJW1c4nU7umncXh8cd9nqu\nsR+N5YONH+guqNLtvHnvbPcgZ1BQEDfeeCMXL17k22+/5fbbb28zDABSUlJoamp/v3v16tWdq1TE\nx4KDg8lIzaDiWAWuyK6fYLbWWMmwZygMJOC0+yG7iRMnMmDAAA4cOMC+fft46623eOCBB7qjNpFu\nt/SxpaScTYELXZygAVJqUlj62FJT6xLpDu0eMnr//fe5++67PV7Ly8tjwYIFvi1Mh4z6JL+522nW\ndMridLdTCTy6/bX0Gv4QCKB+CBK4dPtrEZOFhYWxfcN2lsUtY+xHY7Gesbb8SGoTWM9YGffxOJ4f\n+Tzb87crDCSgaQ9B/Iq/7CFcy+l0kr8xn51lO6mpr+EylwkiiMjQSKYlq6ey+BcdMpJewx8DQSSQ\n6JCRiIh4TYEgIiKAAkFERJopEEREBFAgiIhIMwWCiIgACgQREWmmQBAREUCBICIizRQIIiICKBBE\nRKSZAkFERAAFgoiINPNJIPzkJz8hOjqasWPHtrrd4XAQHh5OUlISSUlJLFu2zBdliIhIJwT5YtJH\nHnmExx9//LptNlNTUykqKvLFlxcRkS7wyR7CpEmTiIiIuO4Y9ToQEfEvPtlDaI/FYmH//v0kJCQQ\nExPDihUriI+PbzEuJyfH/We73Y7dbu++IkVEAoDD4cDhcJgyl886pp08eZK0tDQOHz7cYltdXR1W\nqxWbzcbWrVt54oknOHbsmGdh6pjWJ6ljmoh3Aq5jWlhYGDabDYCZM2fidDo5d+5cT5QiIiLNeiQQ\nqqur3QlWXl6OYRgMGjSoJ0oREZFmPjmHkJGRwZ49e6itrSU2Npbc3FycTicA2dnZbNq0iTVr1hAU\nFITNZqOwsNAXZYiISCf47ByCt3QOoW/SOQQR7wTcOQQREfE/CgQREQEUCCIi0kyBICIigAJBRESa\nKRBERARQIIiISDMFgoiIAAoEERFppkAQERFAgSAiIs0UCCIiAvRQxzTpAQ4HqONclzidTvIK8/h7\n2d8523AWFy6sWIkKiWLaPdPIfCiT4ODgni5TxGu622lfkZNz5eHn/Olup42Njaxcs5KCvQVURFbg\ninZ57lM3gbXaSvzZeDLsGSx9bCn9+/fvsXpFwLv3Tu0hiLSirq6OtIVplESX4Brnan1QP3ANcXF4\nyGEqjlXwt8y/sfm1zYSFhXVvsSIm0TkEke+oq6tj+oLp7Bm+B9ctbYTBd7giXez5P3uYnjWduro6\nH1co4hsKBJFrNDY2krYwjbKRZWDr5F8OgbIRZaQtTKOxsdEn9Yn4kgJB5Bor16ykJLqk82FwVQiU\nRJWw8k8rTa1LpDsoEESaOZ1OCvYWdPgwUVtckS4KHAXuPuIigcL0QPjJT35CdHQ0Y8eObXPMkiVL\niIuLIyEhgYMHD5pdgkiX5G/MpyKywpS5KqIqyN+Yb8pcIt3F9EB45JFH2LZtW5vbi4uLOXHiBMeP\nH2fdunUsWrTI7BJEumRn6c4rHy01gSvaxc6ynabMJdJdTA+ESZMmERER0eb2oqIisrKyAEhOTub8\n+fNUV1ebXYZIp51tOGveT0Q/qKmvMWkyke7R7dchnD59mtjYWPfzoUOHUlVVRXR0dIuxOddcSGW3\n27HrStuWHI4rj/bk5nZsPru9z17R7MKcvYOrLnPZ1PlEWuNwOHB05D2gA3rkwrTvXkVnsVhaHZcT\nAFfW9rjOvIFrPa/LitXU+YJ03ad0g+/+spzb0V/+WtHtnzKKiYmhsrLS/byqqoqYmJjuLkOkhaiQ\nKGgyabImiAyNNGkyke7R7YGQnp5OXl4eAKWlpQwcOLDVw0Ui3W3aPdOwVpuzl2CttjIteZopc4l0\nF9P3aTMyMtizZw+1tbXExsaSm5vr/jx2dnY2s2bNori4mBEjRhASEsL69evNLkGkSzIfyuSP//eP\nHB5y2Ou54s/Gk/lQpglViXQf0wOhoKCg3TGrV682+8uKeC04OJiM1AwqjlXgiuz6CWZrjZUMe4Zu\niS0BR1cqi1xj6WNLSTmbAhe6OEEDpNSksPSxpabWJdIdFAgi1+jfvz+bX99M8vHkzodCAySfSGbz\na5vVF0ECkgJB5DvCwsLY8eYOUj9PxVrbsZPM1horqadS2fHmDvVDkIClQBBpRVhYGNs3bGdZ3DLG\nfjQW6xlry4+kNoH1jJVxH4/j+ZHPsz1/u8JAAppaaPYVAdJT2Z9aaF7ldDrJ35jPzrKd1NTXcJnL\nBBFEZGgk05LVU1n8izfvnQoE8Sv+GAgigcSb904dMhIREUCBICIizRQIIiICKBBERKSZAkFERAAF\ngoiINFMgiIgIoEAQEZFmCgQREQEUCCIi0kyBICIigAJBRESaKRBERATwUSBs27aNUaNGERcXx4sv\nvthiu8PhIDw8nKSkJJKSkli2bJkvyhARkU4IMntCl8vF4sWL2blzJzExMdx9992kp6czevRoj3Gp\nqakUFRWZ/eVFRKSLTN9DKC8vZ8SIEQwbNozg4GDmzZvHO++802Kceh2IiPgX0/cQTp8+TWxsrPv5\n0KFDKSsr8xhjsVjYv38/CQkJxMTEsGLFCuLj41vMlZOT4/6z3W7HHgAdv0REupPD4cDhcJgyl+mB\nYLFY2h0zfvx4KisrsdlsbN26lTlz5nDs2LEW464NBBERaem7vyzn5uZ2eS7TDxnFxMRQWVnpfl5Z\nWcnQoUM9xoSFhWGz2QCYOXMmTqeTc+fOmV2KiIh0gumBMGHCBI4fP87JkydpbGxk48aNpKene4yp\nrq52n0MoLy/HMAwGDRpkdikiItIJph8yCgoKYvXq1dx33324XC4WLlzI6NGjWbt2LQDZ2dls2rSJ\nNWvWEBQUhM1mo7Cw0OwyRESkkyyGn37cx2Kx6JNIfZDFAvpnF+k6b947daWyiIgACgQREWmmQBAR\nEUCBICIizRQIIiICKBBERKSZAkFERAAFgoiINFMgiIgIoEAQEZFmCgQREQEUCCIi0kyBICIigAJB\nRESaKRBERARQIIiISDMFgoiIAAoEERFppkDwksPh6OkSOiRQ6gRHTxfQrkBZS9VprkCp0xs+CYRt\n27YxatQo4uLiePHFF1sds2TJEuLi4khISODgwYO+KKNbBMp/kkCpU4FgHtVprkCp0xumB4LL5WLx\n4sVs27aNiooKCgoK+OSTTzzGFBcXc+LECY4fP866detYtGiR2WWIiEgnmR4I5eXljBgxgmHDhhEc\nHMy8efN45513PMYUFRWRlZUFQHJyMufPn6e6utrsUkREpDMMk7399tvGo48+6n6en59vLF682GPM\n7NmzjffnkLq3AAAF6ElEQVTee8/9fOrUqcaBAwc8xgB66KGHHnp04dFVQZjMYrF0aNyV9/y2/953\nt4uIiG+ZfsgoJiaGyspK9/PKykqGDh163TFVVVXExMSYXYqIiHSC6YEwYcIEjh8/zsmTJ2lsbGTj\nxo2kp6d7jElPTycvLw+A0tJSBg4cSHR0tNmliIhIJ5h+yCgoKIjVq1dz33334XK5WLhwIaNHj2bt\n2rUAZGdnM2vWLIqLixkxYgQhISGsX7/e7DJERKSzunz2wSRbt241vve97xkjRowwXnjhhVbHPP74\n48aIESOMcePGGR9++GE3V3hFe3Xu3r3buOmmm4zExEQjMTHReP7557u9xkceecSIiooy7rzzzjbH\n+MNatlenP6ylYRjGF198YdjtdiM+Pt4YM2aMsWrVqlbH9fSadqTOnl7TixcvGhMnTjQSEhKM0aNH\nG7/85S9bHdfTa9mROnt6La91+fJlIzEx0Zg9e3ar2zu7nj0aCJcvXzbuuOMO4/PPPzcaGxuNhIQE\no6KiwmPMli1bjJkzZxqGYRilpaVGcnKyX9a5e/duIy0trdtru9bevXuNDz/8sM03Wn9YS8Nov05/\nWEvDMIwzZ84YBw8eNAzDMOrq6oyRI0f65f/PjtTpD2va0NBgGIZhOJ1OIzk52di3b5/Hdn9YS8No\nv05/WMurVq5cacyfP7/Verqynj1664pAuWahI3VCz38yatKkSURERLS53R/WEtqvE3p+LQEGDx5M\nYmIiAKGhoYwePZovv/zSY4w/rGlH6oSeX1ObzQZAY2MjLpeLQYMGeWz3h7XsSJ3Q82sJVz6MU1xc\nzKOPPtpqPV1Zzx4NhNOnTxMbG+t+PnToUE6fPt3umKqqqm6rsa0avlunxWJh//79JCQkMGvWLCoq\nKrq1xo7wh7XsCH9cy5MnT3Lw4EGSk5M9Xve3NW2rTn9Y06amJhITE4mOjmby5MnEx8d7bPeXtWyv\nTn9YS4Cf//znvPTSS/Tr1/rbeFfWs0cDwaxrFnytI19v/PjxVFZW8tFHH/H4448zZ86cbqis83p6\nLTvC39ayvr6eH//4x6xatYrQ0NAW2/1lTa9Xpz+sab9+/Th06BBVVVXs3bu31XsD+cNatlenP6zl\nu+++S1RUFElJSdfdW+nsevZoIATKNQsdqTMsLMy9qzlz5kycTifnzp3r1jrb4w9r2RH+tJZOp5O5\nc+fy8MMPt/qD7y9r2l6d/rSm4eHh3H///Rw4cMDjdX9Zy6vaqtMf1nL//v0UFRUxfPhwMjIy2LVr\nFwsWLPAY05X17NFACJRrFjpSZ3V1tTuNy8vLMQyj1WOPPckf1rIj/GUtDcNg4cKFxMfH8+STT7Y6\nxh/WtCN19vSa1tbWcv78eQAuXrzIjh07SEpK8hjjD2vZkTp7ei0Bli9fTmVlJZ9//jmFhYVMmTLF\nvXZXdWU9Tb8OoTMC5ZqFjtS5adMm1qxZQ1BQEDabjcLCwm6vMyMjgz179lBbW0tsbCy5ubk4nU53\njf6wlh2p0x/WEuC9995jw4YNjBs3zv2msHz5cr744gt3rf6wph2ps6fX9MyZM2RlZdHU1ERTUxOZ\nmZlMnTrV737WO1JnT69la64eCvJ2PS2GP5wuFxGRHqeOaSIiAigQRESkmQJBREQABYKIiDRTIIh0\nwYwZM4iIiCAtLa2nSxExjQJBpAv+8z//k/z8/J4uQ8RUCgSR63j//fdJSEjg0qVLNDQ0cOedd1JR\nUcGUKVNavY2FSCDr0QvTRPzd3XffTXp6Os8++ywXL14kMzOzxc3ORHoLBYJIO379618zYcIEbrzx\nRl555ZWeLkfEZ3TISKQdtbW1NDQ0UF9fz8WLF92v++OdYkW8oUAQaUd2djbLli1j/vz5PP300+7X\nddcX6W10yEjkOvLy8rjhhhuYN28eTU1NfP/732f37t0899xzHD16lPr6emJjY3njjTeYPn16T5cr\n4hXd3E5ERAAdMhIRkWYKBBERARQIIiLSTIEgIiKAAkFERJopEEREBID/D4uLdWEcL+4RAAAAAElF\nTkSuQmCC\n"
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 2: x1>=2.5\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([2.5,2.5,2.5,2.5,2.5],[0,1,2,3,4]);\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGDGjxAL0JC+WuIqpoCZdPbGGH/dqQnr\nrluJd8hp7T7k3mbt2n237d3Zhc1166S7a9nt6laewBO4efZ7wkRXXR2VvIEsLVcytW8amAfhNgvQ\nZByu7x/g3I6ADMw1wyCvxzlzjjPXx8+8+ZTz4rquua63xTAMAxER6fP69XQBIiISGBQIIiICKBBE\nRKSVAkFERAAFgoiItFIgiIgI4MNAcDqdJCcnk56e3u72JUuWEB8fT2JiIgcPHvRVGSIi4iGfBcKq\nVatISEjAYrG02VZSUsKJEyc4fvw469atY9GiRb4qQ0REPOSTQKiurqakpITHH3+c9q57Ky4uJjs7\nG4CUlBTOnz9PTU2NL0oREREPBfli0p/97Ge8/PLLfPvtt+1uP336NHFxca7nQ4cOpbq6mpiYGNdr\n7e1ZiIhI57p7AwrT9xDee+89oqOjSU5Ovm5R125rLwAMwwj4x69//eser0F1qsb2HtA76uwt69lb\n6vSG6YGwf/9+iouLGT58OJmZmezatYsFCxa4jYmNjaWqqsr1vLq6mtjYWLNLERGRLjA9EJYvX05V\nVRVffPEFRUVFTJkyhfz8fLcxGRkZrtfKysoYOHCg2+EiERHxP5+cQ7jalUNBa9euBSAnJ4dZs2ZR\nUlLCiBEjCA0NZf369b4uw2dsNltPl+AR1Wme3lBjC1tPF+CR3rKevaVOb1gMbw86+YjFYvH6eJhI\nX2axgP4J9T3efHb6fA9BRG5MgwYN4uuvv77umDRgj5fvY8YcN6LIyEjOnTtn6py6dYWIdMvXX3/d\n6Tde7CZ8M8eMOW7ER2dh3B0KBBERARQIIiLSSoEgIiKAAkFEpMtmzZpFQUFBT5dhOgWCiNxwhg0b\nRkhICOHh4QwePJjHHnuMxsbGbs2Vm5tLVlaW22slJSVtXrsRKBBE5IZjsVh47733qK+v56OPPuLA\ngQMsW7asp8sKeAoEEbmh3X777cyYMYN//OMfFBcXM2bMGCIjI5k8eTJHjx51jXvppZcYOnQot9xy\nC6NGjWLXrl1s27aN3/3ud2zcuJHw8HCSk5OBlquW33jjDS5dusTAgQM5cuSIa57a2lpCQkKoq6sD\nWm74mZSURGRkJP/0T//E4cOH/bsAXaBAEJEb0pWrdauqqti6dSvh4eHMnz+fV155hbq6OmbNmkV6\nejoOh4PPPvuM1157jQMHDvDtt9+yfft2hg0bxowZM/jlL3/JvHnzqK+vd3V3tFgsWCwWbrrpJubO\nnUthYaHrff/yl79gs9m47bbbOHjwIAsXLuTPf/4z586dIycnh4yMDJqamnpkTTqjK5VFpOvsdn4N\nkJt7/XF5eR1vO3my5QEwbFjLo6tzXM1ma3nQEgZz5swhKCiIiIgIZs+ezeDBg2lubmbq1KkAPPPM\nM6xatYr//u//5vbbb+fSpUscOXKEW2+9lTvuuMM1bWe3lZ4/fz45OTmuQ1Jvv/22qwvkunXryMnJ\n4d577wVgwYIFLF++nLKyMu6//37Pfi4/UiCISNfZbOTRcsK1U56MMXkOi8XCu+++y5QpU1yv/fSn\nP3X7oLdYLMTFxXH69Gnuv/9+/vjHP5Kbm8uRI0d44IEH+P3vf8+QIUM6fS+bzcaFCxeoqKggOjqa\njz/+mB/+8IcAnDp1ivz8fF599VXXeIfDwZkzZ7r08/iLDhmJSJ9w++23c+rUKddzwzCoqqpy9WLJ\nzMxk3759nDp1CovFwrPPPgt03r3RarXy8MMPU1hYSGFhIenp6YSGhgJwxx138J//+Z98/fXXrkdD\nQwOPPPKIj35K7ygQRKRPePjhh9myZQu7du3C4XCwcuVKBgwYwPe//32OHTvGrl27uHTpEjfddBMD\nBgzAarUCMHjwYE6ePNnmsNHVz+fPn09RURFvv/028+fPd73+r//6r/zpT3+ioqICwzBobGxky5Yt\nNDQ0+OeH7iIFgoj0CSNHjmTDhg08+eSTREVFsWXLFjZv3kxQUBCXLl3iueeeIyoqiiFDhlBXV8fv\nfvc7AB566CEAbr31ViZMmOCa7+o9h4kTJxIWFsaZM2eYOXOm6/V77rmHP//5zyxevJhBgwYRHx/f\npmFYIFE/BJEblK/7IXj0bzQ31/tzCGbMcQPqaP29+ezUHoKIiAAKBBERaaVAEBERwAfnEL777jvS\n0tK4dOkSTU1N/OAHP3CdnLnCbrfzgx/8gDvvvBOAuXPn8vzzz7sXpnMIIl7piXMIDoeD/KJ8/l7+\nd842nsX5xedYh99FdGg00+6bRtYjWQQHB193XjPm6At8cQ7BJyeVL1y4QEhICJcvXyY1NZUVK1aQ\nmprq2m632/n9739PcXFxx4UpEES84s9AaGpqYuWalRTuLaQyqhJnjNP9+EMzWGusJJxNINOWydIn\nltK/f3+3+cyYoy/xRSD45ErlkJAQoOU/sNPpZNCgQW3G6MNe5MZQX19P+sJ0SmNKcY5ztj+oHziH\nODk85DCVxyr5W9bf2Pz6ZsLDw02bQ7znk0Bobm5m/PjxfP755yxatIiEhAS37RaLhf3795OYmEhs\nbCwrVqxoMwbcL4u32WzYWu9TIiKBob6+nukLplM+shxCPPs7zigne0L2MD17Ojve2gHg9Rx9ORTs\ndjt2u92UuXx6HcI333zDAw88wIsvvuj2YV5fX4/VaiUkJIStW7fy1FNPcezYMffCdMhIxCv+OGSU\n9lAae4bv8fiD3E0jTPp/k8AC++7c1+050k6msX3D9j53+KjXXYcQERHBgw8+yIEDB9xeDw8Pdx1W\nmjlzJg6Hg3PnzvmyFBExWwiUxpR274McIBRKvy6lNNrLOaJLWfmnld2cwPd6U7tN0wOhrq6O8+fP\nA3Dx4kV27NjhaipxRU1NjSvBrtzjo73zDCISmBwOB9wOzts6ON7vCScYlwyMaO92Y5xRTgrthS01\ntRo2bBgxMTFcuHDB9drrr7/O5MmTvXqvzvT2dpumB8KZM2eYMmUKSUlJpKSkkJ6eztSpU1m7di1r\n164FYNOmTYwdO5akpCSefvppioqKzC5DRHyoYGMBpHk5yWdA21OH3VIZXdlS01Wam5tZtWqVOW/Q\nR5geCGPHjuWjjz7i0KFDfPLJJ/z7v/87ADk5OeTk5ADwb//2b/zjH//g0KFD7N+/n/vuu8/sMkTE\nh3aW7YRYLyepATpvN+ARZ4yTneU7Xc8tFgvPPPMMK1as4Jtvvmkz/ujRo0yfPp1bb72VUaNG8c47\n77i2/c///A/p6elEREQwceJEnn/+eSZNmuTa/tRTT3HHHXcQERHBhAkTKC0tBbgh2m3qSmUR6bKz\njWfN+fQw6xOoH9Q21Lq9NGHCBGw2GytWrHB7/cKFC0yfPp1HH32U2tpaioqK+OlPf8qnn34KtPzC\nGh4eTk1NDW+99Rb5+flt7mz68ccf8/XXXzN//nweeughmpqaboh2mwoEEekyJ16cO7ji+n1nuuwy\nl92nt1j4zW9+w6uvvur6DRxafgsfPnw42dnZ9OvXj6SkJH70ox/xzjvv4HQ6+etf/0peXh4DBgxg\n9OjRZGdnu31r51/+5V+IjIykX79+/PznP+fSpUt89tlngGftNq8+RH51/4Sr221aLBYWLFjATTfd\nRFlZmSnr4wkFgoh0mRWr95OY/JXYoHYuqxozZgyzZ8/mxRdfdP2Wf+rUKcrLy4mMjHQ93n77bWpq\naqirq+Py5cvExcW55hg6dKjbnFeumxo4cCCRkZF88803boFzPVe32zx58mSbdpsrV650q6u6utqv\n7TbVU1lEuiw6NBqa8f5XSjPmaJ0nKiyq3U15eXmMHz+epUuXAhAXF0daWhrbt29vM9bpdBIUFERV\nVRXx8fEAVFVVubbv27ePl19+mV27djFmzBgABg0a5Nor6Eq7zejo6Hbbbf7yl7/s4g9vHu0hiEiX\nTbtvGpz2cpIYwKRffq01VqalTGt321133cUjjzzCqlWrsFgszJ49m2PHjrFhwwYcDgcOh4MPPviA\no0ePYrVa+dGPfkRubi4XL17k6NGjFBQUuD7o6+vrCQoK4rbbbqOpqYnf/OY3fPvtt6736u3tNhUI\nItJlWY9kwR4vJ/keUGlGNZBwNqGlpg786le/cl2TEBYWxvbt2ykqKiI2NpYhQ4bw3HPPuU7erl69\nmm+++YbBgweTnZ1NZmam6yroGTNmMGPGDEaOHMmwYcO4+eabueOOO1zv09vbbaqFpsgNyue3rgi1\nYH3MijOq+yeYLXstMAqvLk6z1lp5YeQLPLfkuW7PcT3PPvssZ8+eZf369T6Zv7t63a0rROQGdgFS\nz6bChc6HtqsRUiNTvZ+jNpWlTyzt5gRtffbZZ3zyyScYhkFFRQVvvvmm68TvjU6BICLdtvmNzaQc\nT+n6B3ojpJxIYcv6LWx5c4tXc2x+fbOpN7arr69n7ty5hIWFMW/ePJ555hkyMjJMmz+Q6ZCRyA3K\nXw1y3HoZeHBvI2utldTa1I77IXRzjr5Gh4xEJOCEh4ezfcN2lsUvY+zHY7GesbZ8nfRqzWA9Y2Xc\nJ+N4YeQLbC/Y7vZBbsYc4j3tIfQVdjuowZA5esla9lRP5YKNBews30ltQy2XuUwQQUSFRTEtxfOe\nyt7O0Rf0mp7KZlAgmCw3t+Uh3usla9kTgSD+02t6KovIjS8yMrLTK3PFdyIjI02fU4EgIt3iaZfD\n7vRdBlzfIurrPZP9SSeVRcRnmpqaSF+Y3vUwAAiF8hHlpC9M9+stoPsyBYKI+MzKNSu977sc4D2T\nbyQKBBHxCYfDQeHeQu/6LtN+z2TxDQWCiPhEwcYCKqPMuXtdez2TxXymB8J3331HSkoKSUlJJCQk\n8Nxz7d9wasmSJcTHx5OYmOhqNSciN46dZTtxxpjQWY22PZPFN0z/ltGAAQPYvXs3ISEhXL58mdTU\nVEpLS0lNTXWNKSkp4cSJExw/fpzy8nIWLVrk1zZxIuJ7ZxvPQvs9a7qunZ7JYj6ffO00JKTlDFJT\nUxNOp5NBgwa5bS8uLiY7OxuAlJQUzp8/T01NDTExMW7jcq+6+Mdms2HrBVeH+p3d3vLoTF6eZ/PZ\nbL3iKlyf0FqaypS+y1e5tmeytLDb7dg9+f/WAz4JhObmZsaPH8/nn3/OokWLSEhIcNt++vTpNj1L\nq6urrxsI0oGufOhoPa9Pa2kqU/ouX6W9nsnS9pflPE9/YWmHT04q9+vXj0OHDlFdXc3evXvbTa9r\nL63WFY8iNxZX32UzXKdnspjHp98yioiI4MEHH+TAgQNur8fGxro1rq6uriY2NtaXpYiIn027bxrW\nGnP2Eq7XM1nMY3og1NXVcf78eQAuXrzIjh07SE5OdhuTkZHh6hVaVlbGwIED2xwuEpHeLeuRLBJq\nEzof6IHOeiaLOUw/KHfmzBmys7Npbm6mubmZrKwspk6dytq1awHIyclh1qxZlJSUMGLECEJDQwOu\nV6mIeC84OJjMtEwqj1V61XfZWmsl05apW177gW5/3Vf0kls29wq9ZC19fftrTzQ1NfHPj/4ze4bv\n6d7tKxoh7VQa2wu2m9om80amjmkiEpD69+/vdd9ls3smS8cUCCLiU+Hh4ex4awdpX6RhrfPsJLO1\n1kraqTTd+trPFAgi4nPqmdw76BxCX9FL+gD3Cr1kLQPhHEJ71DPZt9RTWUTaCNRAEN/SSWUREfGa\nAkFERAAFgoiItFIgiIgIoEAQEZFWCgQREQEUCCIi0kqBICIigAJBRERaKRBERARQIIiISCsFgoiI\nAAoEERFpZXogVFVVMXnyZMaMGcPdd9/NK6+80maM3W4nIiKC5ORkkpOTWbZsmdlliIhIFwWZPWFw\ncDB/+MMfSEpKoqGhgXvuuYfp06czevRot3FpaWkUFxeb/fYiItJNpu8hDB48mKSkJADCwsIYPXo0\nX331VZtx6nUgIhJYTN9DuNrJkyc5ePAgKSkpbq9bLBb2799PYmIisbGxrFixgoSEhDZ/Pzc31/Vn\nm82GrRd0qRIR8Se73Y7dbjdlLp91TGtoaMBms/H8888zZ84ct2319fVYrVZCQkLYunUrTz31FMeO\nHXMvTB3TRLyijml9U8C10HQ4HMyePZuZM2fy9NNPdzp++PDhfPjhhwwaNOh/C1MgiHhFgdA3BVQL\nTcMwWLhwIQkJCR2GQU1NjavgiooKDMNwCwMREfE/088hvP/++2zYsIFx48aRnJwMwPLly/nyyy8B\nyMnJYdOmTaxZs4agoCBCQkIoKioyuwwREekin51D8JYOGYl4R4eM+qaAOmQkIiK9kwJBREQABYKI\niLRSIIiICKBAEBGRVgoEEREBFAgiItJKgSAiIoACQUREWikQREQEUCCIiEgrBYKIiAA+7pgmciNw\nOBzkF+Xz9/K/c7bxLE6cWLESHRrNtPumkfVIFsHBwT1dpojXdLdTkQ40NTWxcs1KCvcWUhlViTPG\n6b5P3QzWGisJZxPItGWy9Iml9O/fv8fqvZbudto3BVzHNDMoEKQn1dfXk74wndKYUpy3OTsdb621\nklqbyubXNxMeHu6HCjunQOibFAgiJqqvr2f6gumUjyyHkC78xUZIOZHCjrd2BEQoKBD6JvVDEDFJ\nU1MT6QvTux4GAKFQPqKc9IXpNDU1+aQ+EV9SIIhcZeWalZTGlHY9DK4IhdLoUlb+aaWpdYn4gwJB\npJXD4aBwb6FH5wyuxxnlpNBeiMPhMKkyEf+4biB8++23fP75521e/+STTzr8O1VVVUyePJkxY8Zw\n991388orr7Q7bsmSJcTHx5OYmMjBgwe7WLaI+Qo2FlAZVWnKXJXRlRRsLDBlLhF/6TAQ/vKXvzBq\n1Cjmzp3LmDFjqKiocG3Lzs7ucMLg4GD+8Ic/cOTIEcrKynjttdf49NNP3caUlJRw4sQJjh8/zrp1\n61i0aJEJP4qId3aW7Wz5aqkJnDFOdpbvNGUuEX/pMBB++9vf8uGHH3Lo0CHWr1/PggUL+Otf/9rp\nhIMHDyYpKQmAsLAwRo8ezVdffeU2pri42BUqKSkpnD9/npqaGm9+DhGvnW08a95B1H5Q21Br0mQi\n/tHhlcpOp5MhQ4YAMHHiRHbv3s3s2bOpqqryePKTJ09y8OBBUlJS3F4/ffo0cXFxrudDhw6lurqa\nmJgYt3G5ubmuP9tsNmw2m8fvLdJVTszZO7jiMpdNnU+kPXa7HbvdbspcHQbCLbfcwueff85dd90F\nwJAhQ9i9ezc//OEPOXLkSKcTNzQ08OMf/5hVq1YRFhbWZvu135O1WCxtxlwdCCK+ZsVq6nxBujOM\n+MG1vyzn5eV1e64Od5D/67/+i+bmZior//ck2y233MK2bdt44403rjupw+Fg7ty5PProo8yZM6fN\n9tjYWLc9jerqamJjY7tTv4hpokOjodmkyZohKizKpMlE/KPDQEhKSiI+Pp6HH36Yl156CcMwuHDh\nAj//+c957bXXOpzQMAwWLlxIQkICTz/9dLtjMjIyyM/PB6CsrIyBAwe2OVwk4m/T7puGtcacvQRr\njZVpKdNMmUvEXzq9dUVjYyPPPvssBw4coKGhgfnz5/OLX/yCfv3az5LS0lLuv/9+xo0b5zoMtHz5\ncr788ksAcnJyAFi8eDHbtm0jNDSU9evXM378ePfCdOsK8TOHw8E98+7h8LjDXs819uOxfLjxwx69\nC6puXdE3efPZ2elBzqCgIG6++WYuXrzId999x5133tlhGACkpqbS3Nz5fvfq1au7VqmIjwUHB5OZ\nlknlsUqcUd0/wWyttZJpy9QtsaXX6fRLdhMnTmTAgAEcOHCAffv28fbbb/PQQw/5ozYRv1v6xFJS\nz6bChW5O0AiptaksfWKpqXWJ+EOnh4w++OAD7r33XrfX8vPzWbBggW8L0yEj6SH19fVMz55Oebzu\ndiq9j25/LWIy9UOQ3kq3vxYxWXh4ONs3bGdZ/DLGfjwW6xlr26+kNoP1jJVxn4zjhZEvsL1ge8CE\ngUh3aA9BpBMOh4OCjQXsLN9JbUMtl7lMEEFEhUUxLSVweyprD6Fv0iEjEWlDgdA36ZCRiIh4TYEg\nIiKAAkFERFopEEREBFAgiIhIKwWCiIgACgQREWmlQBAREUCBICIirRQIIiICKBBERKSVAkFERAAF\ngoiItPJJIPzkJz8hJiaGsWPHtrvdbrcTERFBcnIyycnJLFu2zBdliIhIFwT5YtLHHnuMJ5988rpt\nNtPS0iguLvbF24uISDf4ZA9h0qRJREZGXneMeh2IiAQWn+whdMZisbB//34SExOJjY1lxYoVJCQk\ntBmXm5vr+rPNZsNms/mvSBGRXsBut2O3202Zy2cd006ePEl6ejqHDx9us62+vh6r1UpISAhbt27l\nqaee4tixY+6FqWOaiFfUMa1v6nUd08LDwwkJCQFg5syZOBwOzp071xOliIhIqx4JhJqaGleCVVRU\nYBgGgwYN6olSRESklU/OIWRmZrJnzx7q6uqIi4sjLy8Ph8MBQE5ODps2bWLNmjUEBQUREhJCUVGR\nL8oQEZEu8Nk5BG/pHIKId3QOoW/qdecQREQk8CgQREQEUCCIiEgrBYKIiAAKBBERaaVAEBERQIEg\nIiKtFAgiIgIoEEREpJUCQUREAAWCiIi0UiCIiAjQQx3TpAfY7aCOc93icDjIL8rn7+V/52zjWZw4\nsWIlOjSaafdNI+uRLIKDg3u6TBGv6W6nfUVubstDPNbU1MTKNSsp3FtIZVQlzhin+z51M1hrrCSc\nTSDTlsnSJ5bSv3//Hqv3Wrrbad/kzWen9hBE2lFfX0/6wnRKY0pxjnO2P6gfOIc4OTzkMJXHKvlb\n1t/Y/PpmwsPD/VusiEl0DkHkGvX19UxfMJ09w/fgvK2DMLiGM8rJnv+zh+nZ06mvr/dxhSK+oUAQ\nuUpTUxPpC9MpH1kOIV38y6FQPqKc9IXpNDU1+aQ+EV9SIIhcZeWalZTGlHY9DK4IhdLoUlb+aaWp\ndYn4gwJBpJXD4aBwb6HHh4k64oxyUmgvdPURF+ktTA+En/zkJ8TExDB27NgOxyxZsoT4+HgSExM5\nePCg2SWIdEvBxgIqoypNmasyupKCjQWmzCXiL6YHwmOPPca2bds63F5SUsKJEyc4fvw469atY9Gi\nRWaXINItO8t2tny11ATOGCc7y3eaMpeIv5geCJMmTSIyMrLD7cXFxWRnZwOQkpLC+fPnqampMbsM\nkS4723jWvH8R/aC2odakyUT8w+/XIZw+fZq4uDjX86FDh1JdXU1MTEybsblXXUhls9mw6Urbtuz2\nlkdn8vI8m89m67NXNDsxZ+/gistcNnU+kfbY7XbsnnwGeKBHLky79io6i8XS7rhcXVnbua58gGs9\nr8uK1dT5gnTdp/jBtb8s53n6y187/P4to9jYWKqqqlzPq6uriY2N9XcZIm1Eh0ZDs0mTNUNUWJRJ\nk4n4h98DISMjg/z8fADKysoYOHBgu4eLRPxt2n3TsNaYs5dgrbEyLWWaKXOJ+Ivp+7SZmZns2bOH\nuro64uLiyMvLc30fOycnh1mzZlFSUsKIESMIDQ1l/fr1Zpcg0i1Zj2Txx//7Rw4POez1XAlnE8h6\nJMuEqkT8x/RAKCws7HTM6tWrzX5bEa8FBweTmZZJ5bFKnFHdP8FsrbWSacvULbGl19GVyiJXWfrE\nUlLPpsKFbk7QCKm1qSx9YqmpdYn4gwJB5Cr9+/dn8xubSTme0vVQaISUEylsfn1zQPVFEPGUAkHk\nGuHh4ex4awdpX6RhrfPsJLO11kraqTR2vLVD/RCk11IgiLQjPDyc7Ru2syx+GWM/Hov1jLXtV1Kb\nwXrGyrhPxvHCyBfYXrBdYSC9mlpo9hXqqdxtDoeDgo0F7CzfSW1DLZe5TBBBRIVFMS0lcHsqq4Vm\n3+TNZ6cCQeQGpUDom7z57NQhIxERARQIIiLSSoEgIiKAAkFERFopEEREBFAgiIhIKwWCiIgACgQR\nEWmlQBAREUCBICIirRQIIiICKBBERKSVAkFERAAfBcK2bdsYNWoU8fHxvPTSS2222+12IiIiSE5O\nJjk5mWXLlvmiDBER6YIgsyd0Op0sXryYnTt3Ehsby7333ktGRgajR492G5eWlkZxcbHZby8iIt1k\n+h5CRUUFI0aMYNiwYQQHBzNv3jzefffdNuPU60BEJLCYvodw+vRp4uLiXM+HDh1KeXm52xiLxcL+\n/ftJTEwkNjaWFStWkJCQ0Gau3Nxc159tNhs2dfwSEXFjt9ux2+2mzGV6IFgslk7HjB8/nqqqKkJC\nQti6dStz5szh2LFjbcZdHQgiItLWtb8s5+XldXsu0w8ZxcbGUlVV5XpeVVXF0KFD3caEh4cTEhIC\nwMyZM3E4HJw7d87sUkREpAtMD4QJEyZw/PhxTp48SVNTExs3biQjI8NtTE1NjescQkVFBYZhMGjQ\nILNLERGRLjD9kFFQUBCrV6/mgQcewOl0snDhQkaPHs3atWsByMnJYdOmTaxZs4agoCBCQkIoKioy\nuwwREekiixGgX/exWCz6JpKIFywW0D+hvsebz05dqSwiIoACQUREWikQREQEUCCIiEgrBYKIiAAK\nBBERaaVAEBERQIEgIiKtFAgiIgIoEEREpJUCQUREAAWCiIi0UiCIiAigQBARkVYKBBERARQIIiLS\nSoEgIiKAAkFERFopELxkt9t7ugSPqE7z9IYaW9h7ugCP9Jb17C11esMngbBt2zZGjRpFfHw8L730\nUrtjlixZQnx8PImJiRw8eNAXZfhFb/mfRHWapzfU2MLe0wV4pLesZ2+p0xumB4LT6WTx4sVs27aN\nyspKCgsL+fTTT93GlJSUcOLECY4fP866detYtGiR2WWIiEgXmR4IFRUVjBgxgmHDhhEcHMy8efN4\n99133cYUFxeTnZ0NQEpKCufPn6empsbsUkREpCsMk73zzjvG448/7npeUFBgLF682G3M7Nmzjfff\nf9/1fOojdEtSAAAF4ElEQVTUqcaBAwfcxgB66KGHHnp049FdQZjMYrF4NK7lM7/jv3ftdhER8S3T\nDxnFxsZSVVXlel5VVcXQoUOvO6a6uprY2FizSxERkS4wPRAmTJjA8ePHOXnyJE1NTWzcuJGMjAy3\nMRkZGeTn5wNQVlbGwIEDiYmJMbsUERHpAtMPGQUFBbF69WoeeOABnE4nCxcuZPTo0axduxaAnJwc\nZs2aRUlJCSNGjCA0NJT169ebXYaIiHRVt88+mGTr1q3G9773PWPEiBHGiy++2O6YJ5980hgxYoQx\nbtw446OPPvJzhS06q3P37t3GLbfcYiQlJRlJSUnGCy+84PcaH3vsMSM6Otq4++67OxwTCGvZWZ2B\nsJaGYRhffvmlYbPZjISEBGPMmDHGqlWr2h3X02vqSZ09vaYXL140Jk6caCQmJhqjR482fvGLX7Q7\nrqfX0pM6e3otr3b58mUjKSnJmD17drvbu7qePRoIly9fNu666y7jiy++MJqamozExESjsrLSbcyW\nLVuMmTNnGoZhGGVlZUZKSkpA1rl7924jPT3d77Vdbe/evcZHH33U4QdtIKylYXReZyCspWEYxpkz\nZ4yDBw8ahmEY9fX1xsiRIwPy/09P6gyENW1sbDQMwzAcDoeRkpJi7Nu3z217IKylYXReZyCs5RUr\nV6405s+f32493VnPHr11RW+5ZsGTOqHnvxk1adIkIiMjO9weCGsJndcJPb+WAIMHDyYpKQmAsLAw\nRo8ezVdffeU2JhDW1JM6oefXNCQkBICmpiacTieDBg1y2x4Ia+lJndDzawktX8YpKSnh8ccfb7ee\n7qxnjwbC6dOniYuLcz0fOnQop0+f7nRMdXW132rsqIZr67RYLOzfv5/ExERmzZpFZWWlX2v0RCCs\npScCcS1PnjzJwYMHSUlJcXs90Na0ozoDYU2bm5tJSkoiJiaGyZMnk5CQ4LY9UNayszoDYS0Bfvaz\nn/Hyyy/Tr1/7H+PdWc8eDQSzrlnwNU/eb/z48VRVVfHxxx/z5JNPMmfOHD9U1nU9vZaeCLS1bGho\n4Mc//jGrVq0iLCyszfZAWdPr1RkIa9qvXz8OHTpEdXU1e/fubffeQIGwlp3VGQhr+d577xEdHU1y\ncvJ191a6up49Ggi95ZoFT+oMDw937WrOnDkTh8PBuXPn/FpnZwJhLT0RSGvpcDiYO3cujz76aLv/\n8ANlTTurM5DWNCIiggcffJADBw64vR4oa3lFR3UGwlru37+f4uJihg8fTmZmJrt27WLBggVuY7qz\nnj0aCL3lmgVP6qypqXGlcUVFBYZhtHvssScFwlp6IlDW0jAMFi5cSEJCAk8//XS7YwJhTT2ps6fX\ntK6ujvPnzwNw8eJFduzYQXJystuYQFhLT+rs6bUEWL58OVVVVXzxxRcUFRUxZcoU19pd0Z31NP06\nhK7oLdcseFLnpk2bWLNmDUFBQYSEhFBUVOT3OjMzM9mzZw91dXXExcWRl5eHw+Fw1RgIa+lJnYGw\nlgDvv/8+GzZsYNy4ca4PheXLl/Pll1+6ag2ENfWkzp5e0zNnzpCdnU1zczPNzc1kZWUxderUgPu3\n7kmdPb2W7blyKMjb9bQYgXC6XEREepw6pomICKBAEBGRVgoEEREBFAgiItJKgSDSDTNmzCAyMpL0\n9PSeLkXENAoEkW74j//4DwoKCnq6DBFTKRBEruODDz4gMTGRS5cu0djYyN13301lZSVTpkxp9zYW\nIr1Zj16YJhLo7r33XjIyMnj++ee5ePEiWVlZbW52JnKjUCCIdOJXv/oVEyZM4Oabb+bVV1/t6XJE\nfEaHjEQ6UVdXR2NjIw0NDVy8eNH1eiDeKVbEGwoEkU7k5OSwbNky5s+fz7PPPut6XXd9kRuNDhmJ\nXEd+fj433XQT8+bNo7m5me9///vs3r2bX//61xw9epSGhgbi4uJ48803mT59ek+XK+IV3dxOREQA\nHTISEZFWCgQREQEUCCIi0kqBICIigAJBRERaKRBERASA/w8i6HVh8+cDCAAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 3: x2>=1.5\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([0,1,2,3,4],1.5*ones(5));\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGA2QIoFaEhfLXEVU8BMOntjjL82NWHd\ndStxQ05r9yH3NmvX7rtt784Gm7dbJ91dy25Xt/IEnsDNs98TJrrq6qjkAllarmRq3zAwD8JtFqDJ\nOFzfPxzndgJkYK6BQV+Pc+acZq4PH958knlxXddc19tiGIaBiIhc9/r0dAEiIhIcFAgiIgIoEERE\nxE2BICIigAJBRETcFAgiIgIEMBBcLhfJycmkp6e3uX3x4sXEx8eTmJjIgQMHAlWGiIj4KGCBsHLl\nShISErBYLK22lZSUcPz4cY4dO8batWtZuHBhoMoQEREfBSQQampqKCkp4dFHH6Wt696Ki4vJzs4G\nICUlhbNnz1JbWxuIUkRExEchgZj0F7/4BS+99BLffPNNm9tPnjxJXFyc5/mQIUOoqakhJibG81pb\nexYiItKxrt6AwvQ9hHfffZfo6GiSk5OvWtR3t7UVAIZhBP3jueee6/EaVKdqVJ2q8/LDH6YHwr59\n+yguLmbYsGFkZmayc+dO5s+f7zUmNjaW6upqz/OamhpiY2PNLkVERDrB9EBYtmwZ1dXVfP755xQV\nFTF58mTy8/O9xmRkZHheKysrY8CAAV6Hi0REpPsF5BzClS4fClqzZg0AOTk5zJw5k5KSEoYPH05Y\nWBjr1q0LdBkBY7fbe7oEn6hO8/SGGkF1mq231OkPi+HvQacAsVgsfh8PExG53vjz3hnwPQQRuTYN\nHDiQr7766qpj0oDdfn4fM+a4FkVGRnLmzBlT59StK0SkS7766qsOP/HiMOGTOWbMcS0+OgrjrlAg\niIgIoEAQERE3BYKIiAAKBBGRTps5cyYFBQU9XYbpFAgics0ZOnQoNpuNiIgIBg0axCOPPEJTU1OX\n5srNzSUrK8vrtZKSklavXQsUCCJyzbFYLLz77rs0NDTw4Ycfsn//fpYuXdrTZQU9BYKIXNNuvfVW\npk+fzj//+U+Ki4sZPXo0kZGRTJo0iSNHjnjGvfjiiwwZMoSbbrqJkSNHsnPnTrZu3crvfvc7NmzY\nQEREBMnJycClq5Zff/11Lly4wIABAzh8+LBnnrq6Omw2G/X19cClG34mJSURGRnJv/zLv3Do0KHu\nXYBOUCCIyDXp8tW61dXVbNmyhYiICObNm8fLL79MfX09M2fOJD09HafTyaeffsqrr77K/v37+eab\nb9i2bRtDhw5l+vTp/PrXv2bu3Lk0NDR4ujtaLBYsFgs33HADc+bMobCw0PN9//KXv2C327nllls4\ncOAACxYs4M9//jNnzpwhJyeHjIwMmpube2RNOqIrlUWk8xwOngPIzb36uLy89rdVVV16AAwdeunR\n2TmuZLdfenApDGbPnk1ISAj9+/dn1qxZDBo0iJaWFqZMmQLAU089xcqVK/nHP/7BrbfeyoULFzh8\n+DA333wzt912m2fajm4rPW/ePHJycjyHpN566y1PF8i1a9eSk5PD3XffDcD8+fNZtmwZZWVl3Hvv\nvb79XN1IgSAinWe3k8elE64d8mWMyXNYLBbeeecdJk+e7Hnt5z//udcbvcViIS4ujpMnT3Lvvffy\nxz/+kdzcXA4fPsx9993H73//ewYPHtzh97Lb7Zw7d46Kigqio6P56KOP+NGPfgTAiRMnyM/P55VX\nXvGMdzqdnDp1qlM/T3fRISMRuS7ceuutnDhxwvPcMAyqq6s9vVgyMzPZu3cvJ06cwGKx8PTTTwMd\nd2+0Wq08+OCDFBYWUlhYSHp6OmFhYQDcdttt/Od//idfffWV59HY2MhDDz0UoJ/SPwoEEbkuPPjg\ng2zevJmdO3fidDpZsWIF/fr14/vf/z5Hjx5l586dXLhwgRtuuIF+/fphtVoBGDRoEFVVVa0OG135\nfN68eRQVFfHWW28xb948z+v/+q//yp/+9CcqKiowDIOmpiY2b95MY2Nj9/zQnaRAEJHrwogRI1i/\nfj2PP/44UVFRbN68mU2bNhESEsKFCxd45plniIqKYvDgwdTX1/O73/0OgAceeACAm2++mfHjx3vm\nu3LPYcKECYSHh3Pq1ClmzJjhef2uu+7iz3/+M4sWLWLgwIHEx8e3ahgWTNQPQUS6xKff0dxc/88h\nmDHHNai99ffnvVN7CCIiAigQRETETYEgIiJAAM4hfPvtt6SlpXHhwgWam5v54Q9/6Dk5c5nD4eCH\nP/wht99+OwBz5szh2Wef9S5M5xBEglpbv6NOp5P8onz+Xv53TjedxvX5Z1iH3UF0WDRT75lK1kNZ\nhIaGXnVeM+a4HgTiHEJATiqfO3cOm83GxYsXSU1NZfny5aSmpnq2OxwOfv/731NcXNx+YQoEkaB2\n5e9oc3MzK1avoHBPIZVRlbhiXN7HH1rAWmsl4XQCmfZMljy2hL59+3rNZ8Yc15NABEJArlS22WzA\npf/BLpeLgQMHthqjN3uRa0NDQwPpC9IpjSnFNdbV9qA+4Brs4tDgQ1QereRvWX9j02ubiIiIMG0O\n8V9AAqGlpYVx48bx2WefsXDhQhISEry2WywW9u3bR2JiIrGxsSxfvrzVGPC+LN5ut2N336dERIJD\nQ0MD0+ZPo3xEOdh8+xpXlIvdtt1My57G9je3A/g9x/UcCg6HA4fDYcpcAb0O4euvv+a+++7jhRde\n8Hozb2howGq1YrPZ2LJlC0888QRHjx71LkyHjESCmsViIe2BNHYP2+3zG7mXJpj4/yaCBfbevrfL\nc6RVpbFt/bbr7vBRr7sOoX///tx///3s37/f6/WIiAjPYaUZM2bgdDo5c+ZMIEsREbPZoDSmtGtv\n5ABhUPpVKaXRfs4RXcqKP63o4gSB15vabZoeCPX19Zw9exaA8+fPs337dk9Tictqa2s9CXb5Hh9t\nnWcQkeDkdDrhVnDd0s7xfl+4wLhgYET7dyTAFeWi0FF4qSa3oUOHEhMTw7lz5zyvvfbaa0yaNMmv\n79WR3t5u0/RAOHXqFJMnTyYpKYmUlBTS09OZMmUKa9asYc2aNQBs3LiRMWPGkJSUxJNPPklRUZHZ\nZYhIABVsKIA0Pyf5FGh96rBLKqMrL9V0hZaWFlauXGnON7hOmB4IY8aM4cMPP+TgwYN8/PHH/Pu/\n/zsAOTk55OTkAPBv//Zv/POf/+TgwYPs27ePe+65x+wyRCSAdpTtgFg/J6kFOm434BNXjIsd5Ts8\nzy0WC0899RTLly/n66+/bjX+yJEjTJs2jZtvvpmRI0fy9ttve7b9z//8D+np6fTv358JEybw7LPP\nMnHiRM/2J554gttuu43+/fszfvx4SktLAa6Jdpu6UllEOu1002lz3j3MegfqA3WNdV4vjR8/Hrvd\nzvLly71eP3fuHNOmTePhhx+mrq6OoqIifv7zn/PJJ58Al/5gjYiIoLa2ljfffJP8/PxWdzb96KOP\n+Oqrr5g3bx4PPPAAzc3N10S7TQWCiHSaCz/OHVx29b4znXaRi97TWyz89re/5ZVXXvH8BQ6X/gof\nNmwY2dnZ9OnTh6SkJH784x/z9ttv43K5+Otf/0peXh79+vVj1KhRZGdne31q56c//SmRkZH06dOH\nX/7yl1y4cIFPP/0U8K3d5pWHyK/sn3Blu02LxcL8+fO54YYbKCsrM2V9fKFAEJFOs2L1fxKTP1Ue\n0sZlVaNHj2bWrFm88MILnr/yT5w4QXl5OZGRkZ7HW2+9RW1tLfX19Vy8eJG4uDjPHEOGDPGa8/J1\nUwMGDCAyMpKvv/7aK3Cu5sp2m1VVVa3aba5YscKrrpqamm5tt6meyiLSadFh0dCC/39SmjGHe56o\n8Kg2N+Xl5TFu3DiWLFkCQFxcHGlpaWzbtq3VWJfLRUhICNXV1cTHxwNQXV3t2b53715eeukldu7c\nyejRowEYOHCgZ6+gM+02o6Oj22y3+etf/7qTP7x5tIcgIp029Z6pcNLPSWIAk/74tdZamZoytc1t\nd9xxBw899BArV67EYrEwa9Ysjh49yvr163E6nTidTt5//32OHDmC1Wrlxz/+Mbm5uZw/f54jR45Q\nUFDgeaNvaGggJCSEW265hebmZn7729/yzTffeL5Xb2+3qUAQkU7LeigLdvs5yfeASjOqgYTTCZdq\nasdvfvMbzzUJ4eHhbNu2jaKiImJjYxk8eDDPPPOM5+TtqlWr+Prrrxk0aBDZ2dlkZmZ6roKePn06\n06dPZ8SIEQwdOpQbb7yR2267zfN9enu7TbXQFJEusYRZsD5ixRXV9RPMlj0WGIlfF6dZ66w8P+J5\nnln8TJfnuJqnn36a06dPs27duoDM31W97tYVInINOwepp1PhXMdD29QEqZGp/s9Rl8qSx5Z0cYLW\nPv30Uz7++GMMw6CiooI33njDc+L3WqdAEJEu2/T6JlKOpXT+Db0JUo6nsHndZja/sdmvOTa9tsnU\nG9s1NDQwZ84cwsPDmTt3Lk899RQZGRmmzR/MdMhIRLrk8u+oVy8DH+5tZK2zklqX2n4/hC7Ocb3R\nISMRCToRERFsW7+NpfFLGfPRGKynrJc+TnqlFrCesjL247E8P+J5thVs83ojN2MO8Z/2EK4XDgeo\nwZA5tJZA+z2VCzYUsKN8B3WNdVzkIiGEEBUexdQU33sq+zvH9aDX9FQ2gwLBZLm5lx7iP60loN/R\nntZreiqLyLUvMjKywytzJXAiIyNNn1OBICJd4muXw670XQY8nyK63nsmdyedVBaRgGlubiZ9QXrn\nwwAgDMqHl5O+IL1bbwF9PVMgiEjArFi9wv++y0HeM/laokAQkYBwOp0U7in0r+8ybfdMlsBQIIhI\nQBRsKKAyypy717XVM1nMZ3ogfPvtt6SkpJCUlERCQgLPPNP2DacWL15MfHw8iYmJnlZzInLt2FG2\nA1eMCZ3VaN0zWQLD9E8Z9evXj127dmGz2bh48SKpqamUlpaSmprqGVNSUsLx48c5duwY5eXlLFy4\nsFvbxIlI4J1uOg1t96zpvDZ6Jov5AvKxU5vt0hmk5uZmXC4XAwcO9NpeXFxMdnY2ACkpKZw9e5ba\n2lpiYmK8xuVecfGP3W7HrqtDW3M4Lj06kpfn23x2+/V7Fa7W0lSm9F2+wnd7JsslDocDhy//bn0Q\nkEBoaWlh3LhxfPbZZyxcuJCEhASv7SdPnmzVs7SmpuaqgSDt6Mybjtbz6rSWpjKl7/IV2uqZLK3/\nWM7z9Q+WNgTkpHKfPn04ePAgNTU17Nmzp830+u6l1briUeTa4um7bIar9EwW8wT0U0b9+/fn/vvv\nZ//+/V6vx8bGejWurqmpITY2NpCliEg3m3rPVKy15uwlXK1nspjH9ECor6/n7NmzAJw/f57t27eT\nnJzsNSYjI8PTK7SsrIwBAwa0OlwkIr1b1kNZJNQldDzQBx31TBZzmH5Q7tSpU2RnZ9PS0kJLSwtZ\nWVlMmTKFNWvWAJCTk8PMmTMpKSlh+PDhhIWFBV2vUhHxX2hoKJlpmVQerfSr77K1zkqmPVO3vO4G\nuv319UK3bDaP1tJnzc3N/ODhH7B72O6u3b6iCdJOpLGtYJupbTKvZeqYJiJBqW/fvn73XTa7Z7K0\nT4EgIgEVERHB9je3k/Z5GtZ6304yW+uspJ1I062vu5kCQUQCTj2TewedQ7heqA+webSWflHP5MBS\nT2UREQF0UllEREygQBAREUCBICIibgoEEREBFAgiIuKmQBAREUCBICIibgoEEREBFAgiIuKmQBAR\nEUCBICIibgoEEREBFAgiIuJmeiBUV1czadIkRo8ezZ133snLL7/caozD4aB///4kJyeTnJzM0qVL\nzS5DREQ6KcTsCUNDQ/nDH/5AUlISjY2N3HXXXUybNo1Ro0Z5jUtLS6O4uNjsby8iIl1k+h7CoEGD\nSEpKAiA8PJxRo0bx5ZdfthqnXgciIsHF9D2EK1VVVXHgwAFSUlK8XrdYLOzbt4/ExERiY2NZvnw5\nCQkJrb4+NzfX8992ux27ulSJiHhxOBw4HA5T5gpYx7TGxkbsdjvPPvsss2fP9trW0NCA1WrFZrOx\nZcsWnnjiCY4ePepdmDqmiYh0WtC10HQ6ncyaNYsZM2bw5JNPdjh+2LBhfPDBBwwcOPB/C1MgiIh0\nWlC10DQMgwULFpCQkNBuGNTW1noKrqiowDAMrzAQEZHuZ/o5hPfee4/169czduxYkpOTAVi2bBlf\nfPEFADk5OWzcuJHVq1cTEhKCzWajqKjI7DJERKSTAnYOwV86ZCQi0nlBdchIRER6JwWCiIgACgQR\nEXFTIIiICKBAEBERNwWCiIgACgQREXFTIIiICKBAEBERNwWCiIgACgQREXFTIIiICBDgjmki1wKn\n00l+UT5/L/87p5tO48KFFSvRYdFMvWcqWQ9lERoa2tNlivhNdzsVaUdzczMrVq+gcE8hlVGVuGJc\n3vvULWCttZJwOoFMeyZLHltC3759e6xeEQjCjmlmUCBIT2poaCB9QTqlMaW4bnF1ON5aZyW1LpVN\nr20iIiKiGyoUaZsCQcREDQ0NTJs/jfIR5WDrxBc2QcrxFLa/uV2hID1GgSBikubmZn7w8A/YPWx3\n58LgsiZIq0pj2/ptOnwkPUINckRMsmL1CkpjSrsWBgBhUBpdyoo/rTC1LpHuoEAQcXM6nRTuKfTp\nnMHVuKJcFDoKcTqdJlUm0j2uGgjffPMNn332WavXP/7443a/prq6mkmTJjF69GjuvPNOXn755TbH\nLV68mPj4eBITEzlw4EAnyxYxX8GGAiqjKk2ZqzK6koINBabMJdJd2g2Ev/zlL4wcOZI5c+YwevRo\nKioqPNuys7PbnTA0NJQ//OEPHD58mLKyMl599VU++eQTrzElJSUcP36cY8eOsXbtWhYuXGjCjyLi\nnx1lOy59tNQErhgXO8p3mDKXSHdpNxD+67/+iw8++ICDBw+ybt065s+fz1//+tcOJxw0aBBJSUkA\nhIeHM2rUKL788kuvMcXFxZ5QSUlJ4ezZs9TW1vrzc4j47XTTafMOovaBusY6kyYT6R7tXqnscrkY\nPHgwABMmTGDXrl3MmjWL6upqnyevqqriwIEDpKSkeL1+8uRJ4uLiPM+HDBlCTU0NMTExXuNyc3M9\n/22327Hb7T5/b5HOcmHO3sFlF7lo6nwibXE4HDgcDlPmajcQbrrpJj777DPuuOMOAAYPHsyuXbv4\n0Y9+xOHDhzucuLGxkZ/85CesXLmS8PDwVtu/+7Eoi8XSasyVgSASaFasps4XojvDSDf47h/LeXl5\nXZ6r3R3k//7v/6alpYXKyv89yXbTTTexdetWXn/99atO6nQ6mTNnDg8//DCzZ89utT02NtZrT6Om\npobY2Niu1C9imuiwaGgxabIWiAqPMmkyke7RbiAkJSURHx/Pgw8+yIsvvohhGJw7d45f/vKXvPrq\nq+1OaBgGCxYsICEhgSeffLLNMRkZGeTn5wNQVlbGgAEDWh0uEuluU++ZirXWnL0Ea62VqSlTTZlL\npLt0eKVyU1MTTz/9NPv376exsZF58+bxq1/9ij592s6S0tJS7r33XsaOHes5DLRs2TK++OILAHJy\ncgBYtGgRW7duJSwsjHXr1jFu3DjvwnSlsnQzp9PJXXPv4tDYQ37PNeajMXyw4QPdBVW6nT/vnR0e\n5AwJCeHGG2/k/PnzfPvtt9x+++3thgFAamoqLS0d73evWrWqc5WKBFhoaCiZaZlUHq3EFdX1E8zW\nOiuZ9kyFgfQ6HX7IbsKECfTr14/9+/ezd+9e3nrrLR544IHuqE2k2y15bAmpp1PhXBcnaILUulSW\nPLbE1LpEukOHh4zef/997r77bq/X8vPzmT9/fmAL0yEj6SENDQ1My55Gebzudiq9j+52KmIy9UOQ\n3kp3OxUxWUREBNvWb2Np/FLGfDQG6ylr64+ktoD1lJWxH4/l+RHPs61gm8JAejXtIYh0wOl0UrCh\ngB3lO6hrrOMiFwkhhKjwKKamqKeyBBcdMhIREUCHjERExAQKBBERARQIIiLipkAQERFAgSAiIm4K\nBBERARQIIiLipkAQERFAgSAiIm4KBBERARQIIiLipkAQERFAgSAiIm4BCYSf/exnxMTEMGbMmDa3\nOxwO+vfvT3JyMsnJySxdujQQZYiISCeEBGLSRx55hMcff/yqbTbT0tIoLi4OxLcXEZEuCMgewsSJ\nE4mMjLzqGPU6EBEJLgHZQ+iIxWJh3759JCYmEhsby/Lly0lISGhjXO4Vz+zuh4iI/C+H++G/gHVM\nq6qqIj09nUOHDrXa1tDQgNVqxWazsWXLFp544gmOHj3qXZg6pomIdFqv65gWERGBzWYDYMaMGTid\nTs6cOdMTpYiIiFuPBEJtba0nwSoqKjAMg4EDB/ZEKSIi4haQcwiZmZns3r2b+vp64uLiyMvLw+l0\nApCTk8PGjRtZvXo1ISEh2Gw2ioqKAlGGiIh0QsDOIfhL5xBERDqv151DEBGR4KNAEBERQIEgIiJu\nCgQREQEUCCIi4qZAEBERQIEgIiJuCgQREQEUCCIi4qZAEBERQIEgIiJuCgQREQF6qGOa9ACHA+z2\nnq6iV3I6neQX5fP38r9zuuk0LlxYsRIdFs3Ue6aS9VAWoaGhPV2miN90t9PrRW7upYf4rLm5mRWr\nV1C4p5DKqEpcMS7vfeoWsNZaSTidQKY9kyWPLaFv3749Vq8I+PfeqT0EkTY0NDSQviCd0phSXGNd\nbQ/qA67BLg4NPkTl0Ur+lvU3Nr22iYiIiO4tVsQkOocg8h0NDQ1Mmz+N3cN247qlnTD4DleUi93/\nZzfTsqfR0NAQ4ApFAkOBIHKF5uZm0hekUz6iHGyd/OIwKB9eTvqCdJqbmwNSn0ggKRBErrBi9QpK\nY0o7HwaXhUFpdCkr/rTC1LpEuoMCQcTN6XRSuKfQ58NE7XFFuSh0FHr6iIv0FqYHws9+9jNiYmIY\nM2ZMu2MWL15MfHw8iYmJHDhwwOwSRLqkYEMBlVGVpsxVGV1JwYYCU+YS6S6mB8IjjzzC1q1b291e\nUlLC8ePHOXbsGGvXrmXhwoVmlyDSJTvKdlz6aKkJXDEudpTvMGUuke5ieiBMnDiRyMjIdrcXFxeT\nnZ0NQEpKCmfPnqW2ttbsMkQ67XTTafN+I/pAXWOdSZOJdI9uvw7h5MmTxMXFeZ4PGTKEmpoaYmJi\nWo3NveJCKrvdjl1X2rbmcFx6dCQvz7f57Pbr9opmF+bsHVx2kYumzifSFofDgcOX9wAf9MiFad+9\nis5isbQ5LldX1nasM2/gWs+rsmI1db4QXfcp3eC7fyzn+frHXxu6/VNGsbGxVFdXe57X1NQQGxvb\n3WWItBIdFg0tJk3WAlHhUSZNJtI9uj0QMjIyyM/PB6CsrIwBAwa0ebhIpLtNvWcq1lpz9hKstVam\npkw1ZS6R7mL6Pm1mZia7d++mvr6euLg48vLyPJ/HzsnJYebMmZSUlDB8+HDCwsJYt26d2SWIdEnW\nQ1n88f/+kUODD/k9V8LpBLIeyjKhKpHuY3ogFBYWdjhm1apVZn9bEb+FhoaSmZZJ5dFKXFFdP8Fs\nrbOSac/ULbGl19GVyiJXWPLYElJPp8K5Lk7QBKl1qSx5bImpdYl0BwWCyBX69u3Lptc3kXIspfOh\n0AQpx1PY9Nom9UWQXkmBIPIdERERbH9zO2mfp2Gt9+0ks7XOStqJNLa/uV39EKTXUiCItCEiIoJt\n67exNH4pYz4ag/WUtfVHUlvAesrK2I/H8vyI59lWsE1hIL2aWmheL9RTucucTicFGwrYUb6DusY6\nLnKREEKICo9iaop6Kktw8ee9U4EgInIN8ee9U4eMREQEUCCIiIibAkFERAAFgoiIuCkQREQEUCCI\niIibAkFERAAFgoiIuCkQREQEUCCIiIibAkFERAAFgoiIuCkQREQECFAgbN26lZEjRxIfH8+LL77Y\narvD4aB///4kJyeTnJzM0qVLA1GGiIh0QojZE7pcLhYtWsSOHTuIjY3l7rvvJiMjg1GjRnmNS0tL\no7i42OxvLyIiXWT6HkJFRQXDhw9n6NChhIaGMnfuXN55551W49TrQEQkuJi+h3Dy5Eni4uI8z4cM\nGUJ5ebnXGIvFwr59+0hMTCQ2Npbly5eTkJDQaq7c3FzPf9vtduzq+CUi4sXhcOBwOEyZy/RAsFgs\nHY4ZN24c1dXV2Gw2tmzZwuzZszl69GircVcGgoiItPbdP5bz8vK6PJfph4xiY2Oprq72PK+urmbI\nkCFeYyIiIrDZbADMmDEDp9PJmTNnzC5FREQ6wfRAGD9+PMeOHaOqqorm5mY2bNhARkaG15ja2lrP\nOYSKigoMw2DgwIFmlyIiIp1g+iGjkJAQVq1axX333YfL5WLBggWMGjWKNWvWAJCTk8PGjRtZvXo1\nISEh2Gw2ioqKzC5DREQ6yWIE6cd9LBaLPokkItJJ/rx36kplEREBFAgiIuKmQBAREUCBICIibgoE\nEREBFAgiIuKmQBAREUCBICIibgoEEREBFAgiIuKmQBAREUCBICIibgoEEREBFAgiIuKmQBAREUCB\nICIibgoEEREBFAgiIuKmQPCTw+Ho6RJ8ojrN0xtqBNVptt5Spz8CEghbt25l5MiRxMfH8+KLL7Y5\nZvHixcTHx5OYmMiBAwcCUUa36C3/SFSneXpDjaA6zdZb6vSH6YHgcrlYtGgRW7dupbKyksLCQj75\n5BOvMSUlJRw/fpxjx46xdu1aFi5caHYZIiLSSaYHQkVFBcOHD2fo0KGEhoYyd+5c3nnnHa8xxcXF\nZGdnA5CSksLZs2epra01uxQREekMw2Rvv/228eijj3qeFxQUGIsWLfIaM2vWLOO9997zPJ8yZYqx\nf/9+rzGAHnrooYceXXh0VQgms1gsPo279J7f/td9d7uIiASW6YeMYmNjqa6u9jyvrq5myJAhVx1T\nU1NDbGys2aWIiEgnmB4I48eP59ixY1RVVdHc3MyGDRvIyMjwGpORkUF+fj4AZWVlDBgwgJiYGLNL\nERGRTjCQEciDAAAFZUlEQVT9kFFISAirVq3ivvvuw+VysWDBAkaNGsWaNWsAyMnJYebMmZSUlDB8\n+HDCwsJYt26d2WWIiEhndfnsg0m2bNlifO973zOGDx9uvPDCC22Oefzxx43hw4cbY8eONT788MNu\nrvCSjurctWuXcdNNNxlJSUlGUlKS8fzzz3d7jY888ogRHR1t3Hnnne2OCYa17KjOYFhLwzCML774\nwrDb7UZCQoIxevRoY+XKlW2O6+k19aXOnl7T8+fPGxMmTDASExONUaNGGb/61a/aHNfTa+lLnT29\nlle6ePGikZSUZMyaNavN7Z1dzx4NhIsXLxp33HGH8fnnnxvNzc1GYmKiUVlZ6TVm8+bNxowZMwzD\nMIyysjIjJSUlKOvctWuXkZ6e3u21XWnPnj3Ghx9+2O4bbTCspWF0XGcwrKVhGMapU6eMAwcOGIZh\nGA0NDcaIESOC8t+nL3UGw5o2NTUZhmEYTqfTSElJMfbu3eu1PRjW0jA6rjMY1vKyFStWGPPmzWuz\nnq6sZ4/euqK3XLPgS53Q85+MmjhxIpGRke1uD4a1hI7rhJ5fS4BBgwaRlJQEQHh4OKNGjeLLL7/0\nGhMMa+pLndDza2qz2QBobm7G5XIxcOBAr+3BsJa+1Ak9v5Zw6cM4JSUlPProo23W05X17NFAOHny\nJHFxcZ7nQ4YM4eTJkx2Oqamp6bYa26vhu3VaLBb27dtHYmIiM2fOpLKysltr9EUwrKUvgnEtq6qq\nOHDgACkpKV6vB9uatldnMKxpS0sLSUlJxMTEMGnSJBISEry2B8tadlRnMKwlwC9+8Qteeukl+vRp\n+228K+vZo4Fg1jULgebL9xs3bhzV1dV89NFHPP7448yePbsbKuu8nl5LXwTbWjY2NvKTn/yElStX\nEh4e3mp7sKzp1eoMhjXt06cPBw8epKamhj179rR5b6BgWMuO6gyGtXz33XeJjo4mOTn5qnsrnV3P\nHg2E3nLNgi91RkREeHY1Z8yYgdPp5MyZM91aZ0eCYS19EUxr6XQ6mTNnDg8//HCbv/jBsqYd1RlM\na9q/f3/uv/9+9u/f7/V6sKzlZe3VGQxruW/fPoqLixk2bBiZmZns3LmT+fPne43pynr2aCD0lmsW\nfKmztrbWk8YVFRUYhtHmsceeFAxr6YtgWUvDMFiwYAEJCQk8+eSTbY4JhjX1pc6eXtP6+nrOnj0L\nwPnz59m+fTvJycleY4JhLX2ps6fXEmDZsmVUV1fz+eefU1RUxOTJkz1rd1lX1tP06xA6o7dcs+BL\nnRs3bmT16tWEhIRgs9koKirq9jozMzPZvXs39fX1xMXFkZeXh9Pp9NQYDGvpS53BsJYA7733HuvX\nr2fs2LGeN4Vly5bxxRdfeGoNhjX1pc6eXtNTp06RnZ1NS0sLLS0tZGVlMWXKlKD7Xfelzp5ey7Zc\nPhTk73pajGA4XS4iIj1OHdNERARQIIiIiJsCQUREAAWCiIi4KRBEumD69OlERkaSnp7e06WImEaB\nINIF//Ef/0FBQUFPlyFiKgWCyFW8//77JCYmcuHCBZqamrjzzjuprKxk8uTJbd7GQqQ369EL00SC\n3d13301GRgbPPvss58+fJysrq9XNzkSuFQoEkQ785je/Yfz48dx444288sorPV2OSMDokJFIB+rr\n62lqaqKxsZHz5897Xg/GO8WK+EOBINKBnJwcli5dyrx583j66ac9r+uuL3Kt0SEjkavIz8/nhhtu\nYO7cubS0tPD973+fXbt28dxzz3HkyBEaGxuJi4vjjTfeYNq0aT1drohfdHM7EREBdMhIRETcFAgi\nIgIoEERExE2BICIigAJBRETcFAgiIgLA/wdFH0ODZ6/XywAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 4: x2>=2.5\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([0,1,2,3,4],2.5*ones(5));\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGA2QIoFaEhfLXEVU8BMOntjjL82NWHd\ndStxQ05r9yH3NmvX7rtt784Gm7dbJ91dy25Xt/IEnsDNs98TJrrq6qjkAllarmRq3zAwD8JtFqDJ\nOFzfPxzndgJkYK6BQV+Pc+acZq4PH958knlxXddc19tiGIaBiIhc9/r0dAEiIhIcFAgiIgIoEERE\nxE2BICIigAJBRETcFAgiIgIEMBBcLhfJycmkp6e3uX3x4sXEx8eTmJjIgQMHAlWGiIj4KGCBsHLl\nShISErBYLK22lZSUcPz4cY4dO8batWtZuHBhoMoQEREfBSQQampqKCkp4dFHH6Wt696Ki4vJzs4G\nICUlhbNnz1JbWxuIUkRExEchgZj0F7/4BS+99BLffPNNm9tPnjxJXFyc5/mQIUOoqakhJibG81pb\nexYiItKxrt6AwvQ9hHfffZfo6GiSk5OvWtR3t7UVAIZhBP3jueee6/EaVKdqVJ2q8/LDH6YHwr59\n+yguLmbYsGFkZmayc+dO5s+f7zUmNjaW6upqz/OamhpiY2PNLkVERDrB9EBYtmwZ1dXVfP755xQV\nFTF58mTy8/O9xmRkZHheKysrY8CAAV6Hi0REpPsF5BzClS4fClqzZg0AOTk5zJw5k5KSEoYPH05Y\nWBjr1q0LdBkBY7fbe7oEn6hO8/SGGkF1mq231OkPi+HvQacAsVgsfh8PExG53vjz3hnwPQQRuTYN\nHDiQr7766qpj0oDdfn4fM+a4FkVGRnLmzBlT59StK0SkS7766qsOP/HiMOGTOWbMcS0+OgrjrlAg\niIgIoEAQERE3BYKIiAAKBBGRTps5cyYFBQU9XYbpFAgics0ZOnQoNpuNiIgIBg0axCOPPEJTU1OX\n5srNzSUrK8vrtZKSklavXQsUCCJyzbFYLLz77rs0NDTw4Ycfsn//fpYuXdrTZQU9BYKIXNNuvfVW\npk+fzj//+U+Ki4sZPXo0kZGRTJo0iSNHjnjGvfjiiwwZMoSbbrqJkSNHsnPnTrZu3crvfvc7NmzY\nQEREBMnJycClq5Zff/11Lly4wIABAzh8+LBnnrq6Omw2G/X19cClG34mJSURGRnJv/zLv3Do0KHu\nXYBOUCCIyDXp8tW61dXVbNmyhYiICObNm8fLL79MfX09M2fOJD09HafTyaeffsqrr77K/v37+eab\nb9i2bRtDhw5l+vTp/PrXv2bu3Lk0NDR4ujtaLBYsFgs33HADc+bMobCw0PN9//KXv2C327nllls4\ncOAACxYs4M9//jNnzpwhJyeHjIwMmpube2RNOqIrlUWk8xwOngPIzb36uLy89rdVVV16AAwdeunR\n2TmuZLdfenApDGbPnk1ISAj9+/dn1qxZDBo0iJaWFqZMmQLAU089xcqVK/nHP/7BrbfeyoULFzh8\n+DA333wzt912m2fajm4rPW/ePHJycjyHpN566y1PF8i1a9eSk5PD3XffDcD8+fNZtmwZZWVl3Hvv\nvb79XN1IgSAinWe3k8elE64d8mWMyXNYLBbeeecdJk+e7Hnt5z//udcbvcViIS4ujpMnT3Lvvffy\nxz/+kdzcXA4fPsx9993H73//ewYPHtzh97Lb7Zw7d46Kigqio6P56KOP+NGPfgTAiRMnyM/P55VX\nXvGMdzqdnDp1qlM/T3fRISMRuS7ceuutnDhxwvPcMAyqq6s9vVgyMzPZu3cvJ06cwGKx8PTTTwMd\nd2+0Wq08+OCDFBYWUlhYSHp6OmFhYQDcdttt/Od//idfffWV59HY2MhDDz0UoJ/SPwoEEbkuPPjg\ng2zevJmdO3fidDpZsWIF/fr14/vf/z5Hjx5l586dXLhwgRtuuIF+/fphtVoBGDRoEFVVVa0OG135\nfN68eRQVFfHWW28xb948z+v/+q//yp/+9CcqKiowDIOmpiY2b95MY2Nj9/zQnaRAEJHrwogRI1i/\nfj2PP/44UVFRbN68mU2bNhESEsKFCxd45plniIqKYvDgwdTX1/O73/0OgAceeACAm2++mfHjx3vm\nu3LPYcKECYSHh3Pq1ClmzJjhef2uu+7iz3/+M4sWLWLgwIHEx8e3ahgWTNQPQUS6xKff0dxc/88h\nmDHHNai99ffnvVN7CCIiAigQRETETYEgIiJAAM4hfPvtt6SlpXHhwgWam5v54Q9/6Dk5c5nD4eCH\nP/wht99+OwBz5szh2Wef9S5M5xBEglpbv6NOp5P8onz+Xv53TjedxvX5Z1iH3UF0WDRT75lK1kNZ\nhIaGXnVeM+a4HgTiHEJATiqfO3cOm83GxYsXSU1NZfny5aSmpnq2OxwOfv/731NcXNx+YQoEkaB2\n5e9oc3MzK1avoHBPIZVRlbhiXN7HH1rAWmsl4XQCmfZMljy2hL59+3rNZ8Yc15NABEJArlS22WzA\npf/BLpeLgQMHthqjN3uRa0NDQwPpC9IpjSnFNdbV9qA+4Brs4tDgQ1QereRvWX9j02ubiIiIMG0O\n8V9AAqGlpYVx48bx2WefsXDhQhISEry2WywW9u3bR2JiIrGxsSxfvrzVGPC+LN5ut2N336dERIJD\nQ0MD0+ZPo3xEOdh8+xpXlIvdtt1My57G9je3A/g9x/UcCg6HA4fDYcpcAb0O4euvv+a+++7jhRde\n8Hozb2howGq1YrPZ2LJlC0888QRHjx71LkyHjESCmsViIe2BNHYP2+3zG7mXJpj4/yaCBfbevrfL\nc6RVpbFt/bbr7vBRr7sOoX///tx///3s37/f6/WIiAjPYaUZM2bgdDo5c+ZMIEsREbPZoDSmtGtv\n5ABhUPpVKaXRfs4RXcqKP63o4gSB15vabZoeCPX19Zw9exaA8+fPs337dk9Tictqa2s9CXb5Hh9t\nnWcQkeDkdDrhVnDd0s7xfl+4wLhgYET7dyTAFeWi0FF4qSa3oUOHEhMTw7lz5zyvvfbaa0yaNMmv\n79WR3t5u0/RAOHXqFJMnTyYpKYmUlBTS09OZMmUKa9asYc2aNQBs3LiRMWPGkJSUxJNPPklRUZHZ\nZYhIABVsKIA0Pyf5FGh96rBLKqMrL9V0hZaWFlauXGnON7hOmB4IY8aM4cMPP+TgwYN8/PHH/Pu/\n/zsAOTk55OTkAPBv//Zv/POf/+TgwYPs27ePe+65x+wyRCSAdpTtgFg/J6kFOm434BNXjIsd5Ts8\nzy0WC0899RTLly/n66+/bjX+yJEjTJs2jZtvvpmRI0fy9ttve7b9z//8D+np6fTv358JEybw7LPP\nMnHiRM/2J554gttuu43+/fszfvx4SktLAa6Jdpu6UllEOu1002lz3j3MegfqA3WNdV4vjR8/Hrvd\nzvLly71eP3fuHNOmTePhhx+mrq6OoqIifv7zn/PJJ58Al/5gjYiIoLa2ljfffJP8/PxWdzb96KOP\n+Oqrr5g3bx4PPPAAzc3N10S7TQWCiHSaCz/OHVx29b4znXaRi97TWyz89re/5ZVXXvH8BQ6X/gof\nNmwY2dnZ9OnTh6SkJH784x/z9ttv43K5+Otf/0peXh79+vVj1KhRZGdne31q56c//SmRkZH06dOH\nX/7yl1y4cIFPP/0U8K3d5pWHyK/sn3Blu02LxcL8+fO54YYbKCsrM2V9fKFAEJFOs2L1fxKTP1Ue\n0sZlVaNHj2bWrFm88MILnr/yT5w4QXl5OZGRkZ7HW2+9RW1tLfX19Vy8eJG4uDjPHEOGDPGa8/J1\nUwMGDCAyMpKvv/7aK3Cu5sp2m1VVVa3aba5YscKrrpqamm5tt6meyiLSadFh0dCC/39SmjGHe56o\n8Kg2N+Xl5TFu3DiWLFkCQFxcHGlpaWzbtq3VWJfLRUhICNXV1cTHxwNQXV3t2b53715eeukldu7c\nyejRowEYOHCgZ6+gM+02o6Oj22y3+etf/7qTP7x5tIcgIp029Z6pcNLPSWIAk/74tdZamZoytc1t\nd9xxBw899BArV67EYrEwa9Ysjh49yvr163E6nTidTt5//32OHDmC1Wrlxz/+Mbm5uZw/f54jR45Q\nUFDgeaNvaGggJCSEW265hebmZn7729/yzTffeL5Xb2+3qUAQkU7LeigLdvs5yfeASjOqgYTTCZdq\nasdvfvMbzzUJ4eHhbNu2jaKiImJjYxk8eDDPPPOM5+TtqlWr+Prrrxk0aBDZ2dlkZmZ6roKePn06\n06dPZ8SIEQwdOpQbb7yR2267zfN9enu7TbXQFJEusYRZsD5ixRXV9RPMlj0WGIlfF6dZ66w8P+J5\nnln8TJfnuJqnn36a06dPs27duoDM31W97tYVInINOwepp1PhXMdD29QEqZGp/s9Rl8qSx5Z0cYLW\nPv30Uz7++GMMw6CiooI33njDc+L3WqdAEJEu2/T6JlKOpXT+Db0JUo6nsHndZja/sdmvOTa9tsnU\nG9s1NDQwZ84cwsPDmTt3Lk899RQZGRmmzR/MdMhIRLrk8u+oVy8DH+5tZK2zklqX2n4/hC7Ocb3R\nISMRCToRERFsW7+NpfFLGfPRGKynrJc+TnqlFrCesjL247E8P+J5thVs83ojN2MO8Z/2EK4XDgeo\nwZA5tJZA+z2VCzYUsKN8B3WNdVzkIiGEEBUexdQU33sq+zvH9aDX9FQ2gwLBZLm5lx7iP60loN/R\nntZreiqLyLUvMjKywytzJXAiIyNNn1OBICJd4muXw670XQY8nyK63nsmdyedVBaRgGlubiZ9QXrn\nwwAgDMqHl5O+IL1bbwF9PVMgiEjArFi9wv++y0HeM/laokAQkYBwOp0U7in0r+8ybfdMlsBQIIhI\nQBRsKKAyypy717XVM1nMZ3ogfPvtt6SkpJCUlERCQgLPPNP2DacWL15MfHw8iYmJnlZzInLt2FG2\nA1eMCZ3VaN0zWQLD9E8Z9evXj127dmGz2bh48SKpqamUlpaSmprqGVNSUsLx48c5duwY5eXlLFy4\nsFvbxIlI4J1uOg1t96zpvDZ6Jov5AvKxU5vt0hmk5uZmXC4XAwcO9NpeXFxMdnY2ACkpKZw9e5ba\n2lpiYmK8xuVecfGP3W7HrqtDW3M4Lj06kpfn23x2+/V7Fa7W0lSm9F2+wnd7JsslDocDhy//bn0Q\nkEBoaWlh3LhxfPbZZyxcuJCEhASv7SdPnmzVs7SmpuaqgSDt6Mybjtbz6rSWpjKl7/IV2uqZLK3/\nWM7z9Q+WNgTkpHKfPn04ePAgNTU17Nmzp830+u6l1briUeTa4um7bIar9EwW8wT0U0b9+/fn/vvv\nZ//+/V6vx8bGejWurqmpITY2NpCliEg3m3rPVKy15uwlXK1nspjH9ECor6/n7NmzAJw/f57t27eT\nnJzsNSYjI8PTK7SsrIwBAwa0OlwkIr1b1kNZJNQldDzQBx31TBZzmH5Q7tSpU2RnZ9PS0kJLSwtZ\nWVlMmTKFNWvWAJCTk8PMmTMpKSlh+PDhhIWFBV2vUhHxX2hoKJlpmVQerfSr77K1zkqmPVO3vO4G\nuv319UK3bDaP1tJnzc3N/ODhH7B72O6u3b6iCdJOpLGtYJupbTKvZeqYJiJBqW/fvn73XTa7Z7K0\nT4EgIgEVERHB9je3k/Z5GtZ6304yW+uspJ1I062vu5kCQUQCTj2TewedQ7heqA+webSWflHP5MBS\nT2UREQF0UllEREygQBAREUCBICIibgoEEREBFAgiIuKmQBAREUCBICIibgoEEREBFAgiIuKmQBAR\nEUCBICIibgoEEREBFAgiIuJmeiBUV1czadIkRo8ezZ133snLL7/caozD4aB///4kJyeTnJzM0qVL\nzS5DREQ6KcTsCUNDQ/nDH/5AUlISjY2N3HXXXUybNo1Ro0Z5jUtLS6O4uNjsby8iIl1k+h7CoEGD\nSEpKAiA8PJxRo0bx5ZdfthqnXgciIsHF9D2EK1VVVXHgwAFSUlK8XrdYLOzbt4/ExERiY2NZvnw5\nCQkJrb7eYsm94pnd/RARkf/lcD/8F7COaY2Njdjtdp599llmz57tta2hoQGr1YrNZmPLli088cQT\nHD161LswdUwTEem0oGuh6XQ6mTVrFjNmzODJJ5/scPywYcP44IMPGDhw4P8WpkAQEem0oGqhaRgG\nCxYsICEhod0wqK2t9RRcUVGBYRheYSAiIt3P9HMI7733HuvXr2fs2LEkJycDsGzZMr744gsAcnJy\n2LhxI6tXryYkJASbzUZRUZHZZYiISCcF7ByCv3TISESk84LqkJGIiPROCgQREQEUCCIi4qZAEBER\nQIEgIiJuCgQREQEUCCIi4qZAEBERQIEgIiJuCgQREQEUCCIi4qZAEBERIMAd00SuBU6nk/yifP5e\n/ndON53GhQsrVqLDopl6z1SyHsoiNDS0p8sU8ZvudirSjubmZlasXkHhnkIqoypxxbi896lbwFpr\nJeF0Apn2TJY8toS+ffv2WL0iEIQd08ygQJCe1NDQQPqCdEpjSnHd4upwvLXOSmpdKpte20REREQ3\nVCjSNgWCiIkaGhqYNn8a5SPKwdaJL2yClOMpbH9zu0JBeowCQcQkzc3N/ODhH7B72O7OhcFlTZBW\nlca29dt0+Eh6hBrkiJhkxeoVlMaUdi0MAMKgNLqUFX9aYWpdIt1BgSDi5nQ6KdxT6NM5g6txRbko\ndBTidDpNqkyke1w1EL755hs+++yzVq9//PHH7X5NdXU1kyZNYvTo0dx55528/PLLbY5bvHgx8fHx\nJCYmcuDAgU6WLWK+gg0FVEZVmjJXZXQlBRsKTJlLpLu0Gwh/+ctfGDlyJHPmzGH06NFUVFR4tmVn\nZ7c7YWhoKH/4wx84fPgwZWVlvPrqq3zyySdeY0pKSjh+/DjHjh1j7dq1LFy40IQfRcQ/O8p2XPpo\nqQlcMS52lO8wZS6R7tJuIPzXf/0XH3zwAQcPHmTdunXMnz+fv/71rx1OOGjQIJKSkgAIDw9n1KhR\nfPnll15jiouLPaGSkpLC2bNnqa2t9efnEPHb6abT5h1E7QN1jXUmTSbSPdq9UtnlcjF48GAAJkyY\nwK5du5g1axbV1dU+T15VVcWBAwdISUnxev3kyZPExcV5ng8ZMoSamhpiYmK8xuXm5nr+2263Y7fb\nff7eIp3lwpy9g8suctHU+UTa4nA4cDgcpszVbiDcdNNNfPbZZ9xxxx0ADB48mF27dvGjH/2Iw4cP\ndzhxY2MjP/nJT1i5ciXh4eGttn/3Y1EWi6XVmCsDQSTQrFhNnS9Ed4aRbvDdP5bz8vK6PFe7O8j/\n/d//TUtLC5WV/3uS7aabbmLr1q28/vrrV53U6XQyZ84cHn74YWbPnt1qe2xsrNeeRk1NDbGxsV2p\nX8Q00WHR0GLSZC0QFR5l0mQi3aPdQEhKSiI+Pp4HH3yQF198EcMwOHfuHL/85S959dVX253QMAwW\nLFhAQkICTz75ZJtjMjIyyM/PB6CsrIwBAwa0Olwk0t2m3jMVa605ewnWWitTU6aaMpdId+nwSuWm\npiaefvpp9u/fT2NjI/PmzeNXv/oVffq0nSWlpaXce++9jB071nMYaNmyZXzxxRcA5OTkALBo0SK2\nbt1KWFgY69atY9y4cd6F6Upl6WZOp5O75t7FobGH/J5rzEdj+GDDB7oLqnQ7f947OzzIGRISwo03\n3sj58+f59ttvuf3229sNA4DU1FRaWjre7161alXnKhUJsNDQUDLTMqk8WokrqusnmK11VjLtmQoD\n6XU6/JDdhAkT6NevH/v372fv3r289dZbPPDAA91Rm0i3W/LYElJPp8K5Lk7QBKl1qSx5bImpdYl0\nhw4PGb3//vvcfffdXq/l5+czf/78wBamQ0bSQxoaGpiWPY3yeN3tVHof3e1UxGTqhyC9le52KmKy\niIgItq3fxtL4pYz5aAzWU9bWH0ltAespK2M/HsvzI55nW8E2hYH0atpDEOmA0+mkYEMBO8p3UNdY\nx0UuEkIIUeFRTE1RT2UJLjpkJCIigA4ZiYiICRQIIiICKBBERMRNgSAiIoACQURE3BQIIiICKBBE\nRMRNgSAiIoACQURE3BQIIiICKBBERMRNgSAiIoACQURE3AISCD/72c+IiYlhzJgxbW53OBz079+f\n5ORkkpOTWbp0aSDKEBGRTggJxKSPPPIIjz/++FXbbKalpVFcXByIby8iIl0QkD2EiRMnEhkZedUx\n6nUgIhJcArKH0BGLxcK+fftITEwkNjaW5cuXk5CQ0Gpcbm6u57/tdjt2u737ihQR6QUcDgcOh8OU\nuQLWMa2qqor09HQOHTrUaltDQwNWqxWbzcaWLVt44oknOHr0qHdh6pgmItJpva5jWkREBDabDYAZ\nM2bgdDo5c+ZMT5QiIiJuPRIItbW1ngSrqKjAMAwGDhzYE6WIiIhbQM4hZGZmsnv3burr64mLiyMv\nLw+n0wlATk4OGzduZPXq1YSEhGCz2SgqKgpEGSIi0gkBO4fgL51DEBHpvF53DkFERIKPAkFERAAF\ngoiIuCkQREQEUCCIiIibAkFERAAFgoiIuCkQREQEUCCIiIibAkFERAAFgoiIuCkQREQE6KGOadID\nHA5Qx7kucTqd5Bfl8/fyv3O66TQuXFixEh0WzdR7ppL1UBahoaE9XaaI33S30+tFbu6lh/isubmZ\nFatXULinkMqoSlwxLu996haw1lpJOJ1Apj2TJY8toW/fvj1Wrwj4996pPQSRNjQ0NJC+IJ3SmFJc\nY11tD+oDrsEuDg0+ROXRSv6W9Tc2vbaJiIiI7i1WxCQ6hyDyHQ0NDUybP43dw3bjuqWdMPgOV5SL\n3f9nN9Oyp9HQ0BDgCkUCQ4EgcoXm5mbSF6RTPqIcbJ384jAoH15O+oJ0mpubA1KfSCApEESusGL1\nCkpjSjsfBpeFQWl0KSv+tMLUukS6gwJBxM3pdFK4p9Dnw0TtcUW5KHQUevqIi/QWpgfCz372M2Ji\nYhgzZky7YxYvXkx8fDyJiYkcOHDA7BJEuqRgQwGVUZWmzFUZXUnBhgJT5hLpLqYHwiOPPMLWrVvb\n3V5SUsLx48c5duwYa9euZeHChWaXINIlO8p2XPpoqQlcMS52lO8wZS6R7mJ6IEycOJHIyMh2txcX\nF5OdnQ1ASkoKZ8+epba21uwyRDrtdNNp834j+kBdY51Jk4l0j26/DuHkyZPExcV5ng8ZMoSamhpi\nYmJajc294kIqu92OXVfatuZwXHp0JC/Pt/ns9uv2imYX5uwdXHaRi6bOJ9IWh8OBw5f3AB/0yIVp\n372KzmKxtDkuV1fWdqwzb+Baz6uyYjV1vhBd9ynd4Lt/LOf5+sdfG7r9U0axsbFUV1d7ntfU1BAb\nG9vdZYi0Eh0WDS0mTdYCUeFRJk0m0j26PRAyMjLIz88HoKysjAEDBrR5uEiku029ZyrWWnP2Eqy1\nVqamTDVlLpHuYvo+bWZmJrt376a+vp64uDjy8vI8n8fOyclh5syZlJSUMHz4cMLCwli3bp3ZJYh0\nSdZDWfzx//6RQ4MP+T1XwukEsh7KMqEqke5jeiAUFhZ2OGbVqlVmf1sRv4WGhpKZlknl0UpcUV0/\nwWyts5Jpz9QtsaXX0ZXKIldY8tgSUk+nwrkuTtAEqXWpLHlsial1iXQHBYLIFfr27cum1zeRciyl\n86HQBCnHU9j02ib1RZBeSYEg8h0RERFsf3M7aZ+nYa337SSztc5K2ok0tr+5Xf0QpNdSIIi0ISIi\ngm3rt7E0filjPhqD9ZS19UdSW8B6ysrYj8fy/Ijn2VawTWEgvZpaaF4v1FO5y5xOJwUbCthRvoO6\nxjoucpEQQogKj2JqinoqS3Dx571TgSAicg3x571Th4xERARQIIiIiJsCQUREAAWCiIi4KRBERARQ\nIIiIiJsCQUREAAWCiIi4KRBERARQIIiIiJsCQUREAAWCiIi4KRBERAQIUCBs3bqVkSNHEh8fz4sv\nvthqu8PhoH///iQnJ5OcnMzSpUsDUYaIiHRCiNkTulwuFi1axI4dO4iNjeXuu+8mIyODUaNGeY1L\nS0ujuLjY7G8vIiJdZPoeQkVFBcOHD2fo0KGEhoYyd+5c3nnnnVbj1OtARCS4mL6HcPLkSeLi4jzP\nhwwZQnl5udcYi8XCvn37SExMJDY2luXLl5OQkNBqrtzcXM9/2+127Or4JSLixeFw4HA4TJnL9ECw\nWCwdjhk3bhzV1dXYbDa2bNnC7NmzOXr0aKtxVwaCiIi09t0/lvPy8ro8l+mHjGJjY6murvY8r66u\nZsiQIV5jIiIisNlsAMyYMQOn08mZM2fMLkVERDrB9EAYP348x44do6qqiubmZjZs2EBGRobXmNra\nWs85hIqKCgzDYODAgWaXIiIinWD6IaOQkBBWrVrFfffdh8vlYsGCBYwaNYo1a9YAkJOTw8aNG1m9\nejUhISHYbDaKiorMLkNERDrJYgTpx30sFos+iSQi0kn+vHfqSmUREQEUCCIi4qZAEBERQIEgIiJu\nCgQREQEUCCIi4qZAEBERQIEgIiJuCgQREQEUCCIi4qZAEBERQIEgIiJuCgQREQEUCCIi4qZAEBER\nQIEgIiJuCgQREQEUCCIi4qZA8JPD4ejpEnyiOs3TG2oE1Wm23lKnPwISCFu3bmXkyJHEx8fz4osv\ntjlm8eLFxMfHk5iYyIEDBwJRRrfoLf9IVKd5ekONoDrN1lvq9IfpgeByuVi0aBFbt26lsrKSwsJC\nPvnkE68xJSUlHD9+nGPHjrF27VoWLlxodhkiItJJpgdCRUUFw4cPZ+jQoYSGhjJ37lzeeecdrzHF\nxcVkZ2cDkJKSwtmzZ6mtrTW7FBER6QzDZG+//bbx6KOPep4XFBQYixYt8hoza9Ys47333vM8nzJl\nirF//36vMYAeeuihhx5deHRVCCazWCw+jbv0nt/+1313u4iIBJbph4xiY2Oprq72PK+urmbIkCFX\nHVNTU0NsbKzZpYiISCeYHgjjx4/n2LFjVFVV0dzczIYNG8jIyPAak5GRQX5+PgBlZWUMGDCAmJgY\ns0sREZFqvF4uAAAFZ0lEQVROMP2QUUhICKtWreK+++7D5XKxYMECRo0axZo1awDIyclh5syZlJSU\nMHz4cMLCwli3bp3ZZYiISGd1+eyDSbZs2WJ873vfM4YPH2688MILbY55/PHHjeHDhxtjx441Pvzw\nw26u8JKO6ty1a5dx0003GUlJSUZSUpLx/PPPd3uNjzzyiBEdHW3ceeed7Y4JhrXsqM5gWEvDMIwv\nvvjCsNvtRkJCgjF69Ghj5cqVbY7r6TX1pc6eXtPz588bEyZMMBITE41Ro0YZv/rVr9oc19Nr6Uud\nPb2WV7p48aKRlJRkzJo1q83tnV3PHg2EixcvGnfccYfx+eefG83NzUZiYqJRWVnpNWbz5s3GjBkz\nDMMwjLKyMiMlJSUo69y1a5eRnp7e7bVdac+ePcaHH37Y7httMKylYXRcZzCspWEYxqlTp4wDBw4Y\nhmEYDQ0NxogRI4Ly36cvdQbDmjY1NRmGYRhOp9NISUkx9u7d67U9GNbSMDquMxjW8rIVK1YY8+bN\na7Oerqxnj966ordcs+BLndDzn4yaOHEikZGR7W4PhrWEjuuEnl9LgEGDBpGUlARAeHg4o0aN4ssv\nv/QaEwxr6kud0PNrarPZAGhubsblcjFw4ECv7cGwlr7UCT2/lnDpwzglJSU8+uijbdbTlfXs0UA4\nefIkcXFxnudDhgzh5MmTHY6pqanpthrbq+G7dVosFvbt20diYiIzZ86ksrKyW2v0RTCspS+CcS2r\nqqo4cOAAKSkpXq8H25q2V2cwrGlLSwtJSUnExMQwadIkEhISvLYHy1p2VGcwrCXAL37xC1566SX6\n9Gn7bbwr69mjgWDWNQuB5sv3GzduHNXV1Xz00Uc8/vjjzJ49uxsq67yeXktfBNtaNjY28pOf/ISV\nK1cSHh7eanuwrOnV6gyGNe3Tpw8HDx6kpqaGPXv2tHlvoGBYy47qDIa1fPfdd4mOjiY5Ofmqeyud\nXc8eDYTecs2CL3VGRER4djVnzJiB0+nkzJkz3VpnR4JhLX0RTGvpdDqZM2cODz/8cJu/+MGyph3V\nGUxr2r9/f+6//37279/v9XqwrOVl7dUZDGu5b98+iouLGTZsGJmZmezcuZP58+d7jenKevZoIPSW\naxZ8qbO2ttaTxhUVFRiG0eaxx54UDGvpi2BZS8MwWLBgAQkJCTz55JNtjgmGNfWlzp5e0/r6es6e\nPQvA+fPn2b59O8nJyV5jgmEtfamzp9cSYNmyZVRXV/P5559TVFTE5MmTPWt3WVfW0/TrEDqjt1yz\n4EudGzduZPXq1YSEhGCz2SgqKur2OjMzM9m9ezf19fXExcWRl5eH0+n01BgMa+lLncGwlgDvvfce\n69evZ+zYsZ43hWXLlvHFF194ag2GNfWlzp5e01OnTpGdnU1LSwstLS1kZWUxZcqUoPtd96XOnl7L\ntlw+FOTvelqMYDhdLiIiPU4d00REBFAgiIiImwJBREQABYKIiLgpEES6YPr06URGRpKent7TpYiY\nRoEg0gX/8R//QUFBQU+XIWIqBYLIVbz//vskJiZy4cIFmpqauPPOO6msrGTy5Mlt3sZCpDfr0QvT\nRILd3XffTUZGBs8++yznz58nKyur1c3ORK4VCgSRDvzmN79h/Pjx3Hjjjbzyyis9XY5IwOiQkUgH\n6uvraWpqorGxkfPnz3teD8Y7xYr4Q4Eg0oGcnByWLl3KvHnzePrppz2v664vcq3RISORq8jPz+eG\nG25g7ty5tLS08P3vf59du3bx3HPPceTIERobG4mLi+ONN95g2rRpPV2uiF90czsREQF0yEhERNwU\nCCIiAigQRETETYEgIiKAAkFERNwUCCIiAsD/B/EgQ4PPEe9CAAAAAElFTkSuQmCC\n"
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 5: x2>=1.5 and x1>=1.5\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([1.5,1.5,2.5,4],[4,1.5,1.5,1.5]);\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGA2QIgFaEhfLXEVU8BMOntjjL/u1IR1\n163EO+S0tofc26xdu++2vTsbbK5bJ91dy25Xt/IEnsDNs98TJrrq6qjkAllarmRq3zQwD8JtFqDJ\nOFzfP8S5nQAZmGtggNfjnDnHmevDhzefYl5c1zXX9bYYhmEgIiJ9Xr/uLkBERAKDAkFERAAFgoiI\nNFMgiIgIoEAQEZFmCgQREQH8GAgul4ukpCTS0tJa3b5kyRLi4uJISEjg4MGD/ipDRES85LdAWLVq\nFfHx8VgslhbbiouLOXHiBMePH2fdunUsWrTIX2WIiIiX/BIIVVVVFBcX8+ijj9LadW9FRUVkZWUB\nkJyczPnz56murvZHKSIi4qUgf0z685//nJdeeolvvvmm1e2nT58mNjbW/Xzo0KFUVVURHR3tfq21\nPQsREWlfZ29AYfoewrvvvktUVBRJSUnXLeq721oLAMMwAv7x3HPPdXsNvalOCPw6e8paqs6+Wacv\nTA+E/fv3U1RUxPDhw8nIyGDXrl0sWLDAY0xMTAyVlZXu51VVVcTExJhdioiIdIDpgbB8+XIqKyv5\n/PPPKSwsZMqUKeTl5XmMSU9Pd79WWlrKwIEDPQ4XiYhI1/PLOYRrXT0UtHbtWgCys7OZNWsWxcXF\njBgxgpCQENavX+/vMvzGbrd3dwle6Sl1gr27C2hXT1lL1WmunlKnLyyGrwed/MRisfh8PEx6HosF\n9J9dpPN8ee/0+x6CiPROgwYN4quvvrrumFRgj4/fx4w5eqOIiAjOnTtn6py6dYWIdMpXX33V7ide\nHCZ8MseMOXrjo70w7gwFgoiIAAoEERFppkAQERFAgSAi0mGzZs0iPz+/u8swnQJBRHqdYcOGYbPZ\nCAsLY/DgwTzyyCM0NDR0aq6cnBwyMzM9XisuLm7xWm+gQBCRXsdisfDuu+9SV1fHhx9+yIEDB1i2\nbFl3lxXwFAgi0qvdeuutzJgxg3/+858UFRUxZswYIiIimDx5MkePHnWPe/HFFxk6dCg33XQTo0aN\nYteuXWzbto3f/e53bNy4kbCwMJKSkoArVy2//vrrXLp0iYEDB3LkyBH3PDU1NdhsNmpra4ErN/xM\nTEwkIiKCf/mXf+Hw4cNduwAdoEAQkV7p6tW6lZWVbN26lbCwMObPn8/LL79MbW0ts2bNIi0tDafT\nyaeffsqrr77KgQMH+Oabb9i+fTvDhg1jxowZ/OpXv2LevHnU1dW5uztaLBYsFgs33HADc+fOpaCg\nwP19//KXv2C327nllls4ePAgCxcu5M9//jPnzp0jOzub9PR0Ghsbu2VN2qMrlUWk4xwOngPIybn+\nuNzctredPHnlATBs2JVHR+e4lt1+5cGVMJgzZw5BQUGEh4cze/ZsBg8eTFNTE1OnTgXgqaeeYtWq\nVfzjH//g1ltv5dKlSxw5coSbb76Z2267zT1te7eVnj9/PtnZ2e5DUm+99Za7C+S6devIzs7m7rvv\nBmDBggUsX76c0tJS7r33Xu9+ri6kQBCRjrPbyeXKCdd2eTPG5DksFgvvvPMOU6ZMcb/2s5/9zOON\n3mKxEBsby+nTp7n33nv54x//SE5ODkeOHOG+++7j97//PUOGDGn3e9ntdi5cuEB5eTlRUVF89NFH\n/PCHPwTg1KlT5OXl8corr7jHO51Ozpw506Gfp6vokJGI9Am33norp06dcj83DIPKykp3L5aMjAz2\n7dvHqVOnsFgsPP3000D73RutVisPPvggBQUFFBQUkJaWRkhICAC33XYb//Vf/8VXX33lftTX1/PQ\nQw/56af0jQJBRPqEBx98kC1btrBr1y6cTicrV65kwIABfP/73+fYsWPs2rWLS5cuccMNNzBgwACs\nVisAgwcP5uTJky0OG137fP78+RQWFvLWW28xf/589+s//elP+dOf/kR5eTmGYdDQ0MCWLVuor6/v\nmh+6gxQIItInjBw5kg0bNvD4448TGRnJli1b2Lx5M0FBQVy6dIlnnnmGyMhIhgwZQm1tLb/73e8A\neOCBBwC4+eabmTBhgnu+a/ccJk6cSGhoKGfOnGHmzJnu1++66y7+/Oc/s3jxYgYNGkRcXFyLhmGB\nRP0QJKCoH0LP4dXvaE6O7+cQzJijF2pr/X1579QegoiIAAoEERFppkAQERHAD+cQvv32W1JTU7l0\n6RKNjY384Ac/cJ+cucrhcPCDH/yA22+/HYC5c+fy7LPPehamcwh9ks4h9Byt/Y46nU7yCvP4e9nf\nOdtwFtfnn2EdfgdRIVFMu2camQ9lEhwcfN15zZijL/DHOQS/nFS+cOECNpuNy5cvk5KSwooVK0hJ\nSXFvdzgc/P73v6eoqKjtwhQIfZICoee49ne0sbGRlWtWUrC3gIrIClzRLs/jD01grbYSfzaeDHsG\nSx9bSv/+/T3mM2OOvsQfgeCXK5VtNhtw5T+wy+Vi0KBBLcbozV6kd6irqyNtYRol0SW4xrlaH9QP\nXENcHB5ymIpjFfwt829sfm0zYWFhps0hvvNLIDQ1NTF+/Hg+++wzFi1aRHx8vMd2i8XC/v37SUhI\nICYmhhUrVrQYA56XxdvtduzN9ykRkcBQV1fH9AXTKRtZBjbvvsYV6WKPbQ/Ts6az480dAD7P0ZdD\nweFw4HA4TJnLr9chfP3119x333288MILHm/mdXV1WK1WbDYbW7du5YknnuDYsWOehemQUZ+kQ0Y9\nh8ViIfWBVPYM3+P1G7mHBpj0/yaBBfbdvq/Tc6SeTGX7hu197vBRj7sOITw8nPvvv58DBw54vB4W\nFuY+rDRz5kycTifnzp3zZykiYjYblESXdO6NHCAESr4qoSTKxzmiSlj5p5WdnMD/elK7TdMDoba2\nlvPnzwNw8eJFduzY4W4qcVV1dbU7wa7e46O18wwiEpicTifcCq5b2jje7w0XGJcMjCjfdgldkS4K\nHAVXamo2bNgwoqOjuXDhgvu11157jcmTJ/v0vdrT09ttmh4IZ86cYcqUKSQmJpKcnExaWhpTp05l\n7dq1rF27FoBNmzYxduxYEhMTefLJJyksLDS7DBHxo/yN+ZDq4ySfAi1PHXZKRVTFlZqu0dTUxKpV\nq8z5Bn2E6YEwduxYPvzwQw4dOsTHH3/Mf/zHfwCQnZ1NdnY2AP/+7//OP//5Tw4dOsT+/fu55557\nzC5DRPxoZ+lOiPFxkmqg/XYDXnFFu9hZttP93GKx8NRTT7FixQq+/vrrFuOPHj3K9OnTufnmmxk1\nahRvv/22e9v//M//kJaWRnh4OBMnTuTZZ59l0qRJ7u1PPPEEt912G+Hh4UyYMIGSkhKAXtFuU1cq\ni0iHnW04a867h1nvQP2gpr7G46UJEyZgt9tZsWKFx+sXLlxg+vTpPPzww9TU1FBYWMjPfvYzPvnk\nE+DKH6xhYWFUV1fz5ptvkpeX1+LOph999BFfffUV8+fP54EHHqCxsbFXtNtUIIhIh7nw4dzBVdfv\nO9Nhl7nsOb3Fwm9+8xteeeUV91/gcOWv8OHDh5OVlUW/fv1ITEzkRz/6EW+//TYul4u//vWv5Obm\nMmDAAEaPHk1WVpbHp3b+7d/+jYiICPr168cvfvELLl26xKeffgp4127z2kPk1/ZPuLbdpsViYcGC\nBdxwww2Ulpaasj7eUCCISIdZsfo+ickfLw5q5bKqMWPGMHv2bF544QX3X/mnTp2irKyMiIgI9+Ot\nt96iurqa2tpaLl++TGxsrHuOoUOHesx59bqpgQMHEhERwddff+0RONdzbbvNkydPtmi3uXLlSo+6\nqqqqurTdpnoqi0iHRYVEQRO+/0lpxhzN80SGRra6KTc3l/Hjx7N06VIAYmNjSU1NZfv27S3Gulwu\ngoKCqKysJC4uDoDKykr39n379vHSSy+xa9cuxowZA8CgQYPcewUdabcZFRXVarvNX/3qVx384c2j\nPQQR6bBp90yD0z5OEg2Y9MevtdrKtORprW674447eOihh1i1ahUWi4XZs2dz7NgxNmzYgNPpxOl0\n8v7773P06FGsVis/+tGPyMnJ4eLFixw9epT8/Hz3G31dXR1BQUHccsstNDY28pvf/IZvvvnG/b16\nertNBYKIdFjmQ5mwx8dJvgdUmFENxJ+Nv1JTG37961+7r0kIDQ1l+/btFBYWEhMTw5AhQ3jmmWfc\nJ29Xr17N119/zeDBg8nKyiIjI8N9FfSMGTOYMWMGI0eOZNiwYdx4443cdttt7u/T09ttqoWmBBTd\nuqLnsIRYsD5ixRXZ+RPMlr0WGIVPF6dZa6w8P/J5nlnyTKfnuJ6nn36as2fPsn79er/M31k97tYV\nItKLXYCUsylwof2hrWqAlIgU3+eoSWHpY0s7OUFLn376KR9//DGGYVBeXs4bb7zhPvHb2ykQRKTT\nNr++meTjyR1/Q2+A5BPJbFm/hS1vbPFpjs2vbTb1xnZ1dXXMnTuX0NBQ5s2bx1NPPUV6erpp8wcy\nHTKSgKJDRj3H1d9Rj14GXtzbyFpjJaUmpe1+CJ2co6/RISMRCThhYWFs37CdZXHLGPvRWKxnrFc+\nTnqtJrCesTLu43E8P/J5tudv93gjN2MO8Z32EPoKhwN6QIOhHrGH0EPW0t/a6qmcvzGfnWU7qamv\n4TKXCSKIyNBIpiV731PZ1zn6gh7TU9kMCgST5eRceQS4HhEIPWQt/U2/o92rx/RUFpHeLyIiot0r\nc8V/IiIiTJ9TgSAineJtl8PO9F0G3J8i6us9k7uSTiqLiN80NjaStjCt42EAEAJlI8pIW5jWpbeA\n7ssUCCLiNyvXrPS973KA90zuTRQIIuIXTqeTgr0FvvVdpvWeyeIfCgQR8Yv8jflURJpz97rWeiaL\n+UwPhG+//Zbk5GQSExOJj4/nmWdav+HUkiVLiIuLIyEhwd1qTkR6j52lO3FFm9BZjZY9k8U/TP+U\n0YABA9i9ezc2m43Lly+TkpJCSUkJKSkp7jHFxcWcOHGC48ePU1ZWxqJFi7q0TZyI+N/ZhrPQes+a\njmulZ7KYzy8fO7XZrpxBamxsxOVyMWjQII/tRUVFZGVlAZCcnMz58+eprq4mOjraY1zONRf/2O12\n7Lo6tCWH48qjPbm53s1nt/fdq3C1lqYype/yNb7bM1mucDgcOLz5/9YLfgmEpqYmxo8fz2effcai\nRYuIj4/32H769OkWPUurqqquGwjSho686Wg9r09raSpT+i5fo7WeydLyj+Vcb/9gaYVfTir369eP\nQ4cOUVVVxd69e1tNr+9eWq0rHkV6F3ffZTNcp2eymMevnzIKDw/n/vvv58CBAx6vx8TEeDSurqqq\nIiYmxp+liEgXm3bPNKzV5uwlXK9nspjH9ECora3l/PnzAFy8eJEdO3aQlJTkMSY9Pd3dK7S0tJSB\nAwe2OFwkIj1b5kOZxNfEtz/QC+31TBZzmH5Q7syZM2RlZdHU1ERTUxOZmZlMnTqVtWvXApCdnc2s\nWbMoLi5mxIgRhISEBFyvUhHxXXBwMBmpGVQcq/Cp77K1xkqGPUO3vO4Cuv11X9FDbtms21/3Lo2N\njfzrw//KnuF7Onf7igZIPZXK9vztprbJ7M3UMU1EAlL//v197rtsds9kaZsCQUT8KiwsjB1v7iD1\n81Sstd6dZLbWWEk9lapbX3cxBYKI+J16JvcMOofQV/SQPsA94hxCD1nLQKWeyf6lnsrSa/SIQBAJ\nYDqpLCIiPlMgiIgIoEAQEZFmCgQREQEUCCIi0kyBICIigAJBRESaKRBERARQIIiISDMFgoiIAAoE\nERFppkAQERFAgSAiIs1MD4TKykomT57MmDFjuPPOO3n55ZdbjHE4HISHh5OUlERSUhLLli0zuwwR\nEemgILMnDA4O5g9/+AOJiYnU19dz1113MX36dEaPHu0xLjU1laKiIrO/vYiIdJLpewiDBw8mMTER\ngNDQUEaPHs2XX37ZYpx6HYiIBBbT9xCudfLkSQ4ePEhycrLH6xaLhf3795OQkEBMTAwrVqwgPj6+\nxdfn5OS4/22327GrS5WIiAeHw4HD4TBlLr91TKuvr8dut/Pss88yZ84cj211dXVYrVZsNhtbt27l\niSee4NixY56FqWNan6SOaSK+CbgWmk6nk9mzZzNz5kyefPLJdscPHz6cDz74gEGDBv1vYQqEPkmB\nIOKbgGqhaRgGCxcuJD4+vs0wqK6udhdcXl6OYRgeYSAiIl3P9HMI7733Hhs2bGDcuHEkJSUBsHz5\ncr744gsAsrOz2bRpE2vWrCEoKAibzUZhYaHZZYiISAf57RyCr3TIqG/SISMR3wTUISMREemZFAgi\nIgIoEEREpJkCQUREAAWCiIg0UyCIiAigQBARkWYKBBERARQIIiLSTIEgIiKAAkFERJopEEREBPBz\nxzSR3sDpdJJXmMffy/7O2YazuHBhxUpUSBTT7plG5kOZBAcHd3eZIj7T3U4loATS3U4bGxtZuWYl\nBXsLqIiswBXt8tynbgJrtZX4s/Fk2DNY+thS+vfv3231ikAAdkwzgwKhbwqUQKirqyNtYRol0SW4\nbnG1O95aYyWlJoXNr20mLCysCyoUaZ0CQXqNQAiEuro6pi+YTtnIMrB14AsbIPlEMjve3KFQkG6j\nfggiJmlsbCRtYVrHwwAgBMpGlJG2MI3Gxka/1CfiTwoEkWusXLOSkuiSjofBVSFQElXCyj+tNLUu\nka6gQBBp5nQ6Kdhb4NU5g+txRboocBTgdDpNqkyka1w3EL755hs+++yzFq9//PHHbX5NZWUlkydP\nZsyYMdx55528/PLLrY5bsmQJcXFxJCQkcPDgwQ6WLWK+/I35VERWmDJXRVQF+RvzTZlLpKu0GQh/\n+ctfGDVqFHPnzmXMmDGUl5e7t2VlZbU5YXBwMH/4wx84cuQIpaWlvPrqq3zyySceY4qLizlx4gTH\njx9n3bp1LFq0yIQfRcQ3O0t3XvloqQlc0S52lu00ZS6RrtJmIPz2t7/lgw8+4NChQ6xfv54FCxbw\n17/+td0JBw8eTGJiIgChoaGMHj2aL7/80mNMUVGRO1SSk5M5f/481dXVvvwcIj4723DWvIOo/aCm\nvsakyUS6RptXKrtcLoYMGQLAxIkT2b17N7Nnz6aystLryU+ePMnBgwdJTk72eP306dPExsa6nw8d\nOpSqqiqio6M9xuXk5Lj/bbfbsdvtXn9vkY5yYc7ewVWXuWzqfCKtcTgcOBwOU+ZqMxBuuukmPvvs\nM+644w4AhgwZwu7du/nhD3/IkSNH2p24vr6eH//4x6xatYrQ0NAW27/7OVmLxdJizLWBIOJvVqym\nzhekO8NIF/juH8u5ubmdnqvNHeT//u//pqmpiYqK/z3JdtNNN7Ft2zZef/31607qdDqZO3cuDz/8\nMHPmzGmxPSYmxmNPo6qqipiYmM7UL2KaqJAoaDJpsiaIDI00aTKRrtFmICQmJhIXF8eDDz7Iiy++\niGEYXLhwgV/84he8+uqrbU5oGAYLFy4kPj6eJ598stUx6enp5OXlAVBaWsrAgQNbHC4S6WrT7pmG\ntdqcvQRrtZVpydNMmUukq7R764qGhgaefvppDhw4QH19PfPnz+eXv/wl/fq1niUlJSXce++9jBs3\nzn0YaPny5XzxxRcAZGdnA7B48WK2bdtGSEgI69evZ/z48Z6F6dYVfVJ33rrC6XRy17y7ODzusM9z\njf1oLB9s/EB3QZUu58t7Z7sHOYOCgrjxxhu5ePEi3377LbfffnubYQCQkpJCU1P7+92rV6/uWKUi\nfhYcHExGagYVxypwRXb+BLO1xkqGPUNhID1Oux+ymzhxIgMGDODAgQPs27ePt956iwceeKArahPp\ncksfW0rK2RS40MkJGiClJoWljy01tS6RrtDuIaP333+fu+++2+O1vLw8FixY4N/CdMioTwqYu51m\nTacsTnc7lZ5Ht7+WXiMQAgHUD0F6Lt3+WsRkYWFhbN+wnWVxyxj70VisZ6wtP5LaBNYzVsZ9PI7n\nRz7P9vztCgPp0bSHIAElUPYQruV0OsnfmM/Osp3U1NdwmcsEEURkaCTTktVTWQKLDhlJrxGIgSDS\nk+iQkYiI+EyBICIigAJBRESaKRBERARQIIiISDMFgoiIAAoEERFppkAQERFAgSAiIs0UCCIiAigQ\nRESkmQJBREQABYKIiDTzSyD85Cc/ITo6mrFjx7a63eFwEB4eTlJSEklJSSxbtswfZYiISAcE+WPS\nRx55hMcff/y6bTZTU1MpKiryx7cXEZFO8MsewqRJk4iIiLjuGPU6EBEJLH7ZQ2iPxWJh//79JCQk\nEBMTw4oVK4iPj28xLicnx/1vu92O3W7vuiKlW0REXGmSIyLecjQ/fOe3jmknT54kLS2Nw4cPt9hW\nV1eH1WrFZrOxdetWnnjiCY4dO+ZZmDqmiYh0WI/rmBYWFobNZgNg5syZOJ1Ozp071x2liIhIs24J\nhOrqaneClZeXYxgGgwYN6o5SRESkmV/OIWRkZLBnzx5qa2uJjY0lNzcXp9MJQHZ2Nps2bWLNmjUE\nBQVhs9koLCz0RxkiItIBfjuH4CudQxAR6bgedw5BREQCjwJBREQABYKIiDRTIIiICKBAEBGRZgoE\nEREBFAgiItJMgSAiIoACQUREmikQREQEUCCIiEgzBYKIiADd1DFNuoHDAeo41ylOp5O8wjz+XvZ3\nzjacxYULK1aiQqKYds80Mh/KJDg4uLvLFPGZ7nbaV+TkXHmI1xobG1m5ZiUFewuoiKzAFe3y3Kdu\nAmu1lfiz8WTYM1j62FL69+/fbfWKgG/vndpDEGlFXV0daQvTKIkuwTXO1fqgfuAa4uLwkMNUHKvg\nb5l/Y/NrmwkLC+vaYkVMonMIIt9RV1fH9AXT2TN8D65b2giD73BFutjzf/YwPWs6dXV1fq5QxD8U\nCCLXaGxsJG1hGmUjy8DWwS8OgbIRZaQtTKOxsdEv9Yn4kwJB5Bor16ykJLqk42FwVQiURJWw8k8r\nTa1LpCsoEESaOZ1OCvYWeH2YqC2uSBcFjgJ3H3GRnsL0QPjJT35CdHQ0Y8eObXPMkiVLiIuLIyEh\ngYMHD5pdgkin5G/MpyKywpS5KqIqyN+Yb8pcIl3F9EB45JFH2LZtW5vbi4uLOXHiBMePH2fdunUs\nWrTI7BJEOmVn6c4rHy01gSvaxc6ynabMJdJVTA+ESZMmERER0eb2oqIisrKyAEhOTub8+fNUV1eb\nXYZIh51tOGveb0Q/qKmvMWkyka7R5dchnD59mtjYWPfzoUOHUlVVRXR0dIuxOddcSGW327HrStuW\nHI4rj/bk5no3n93eZ69odmHO3sFVl7ls6nwirXE4HDi8eQ/wQrdcmPbdq+gsFkur43J0ZW37OvIG\nrvW8LitWU+cL0nWf0gW++8dyrrd//LWiyz9lFBMTQ2Vlpft5VVUVMTExXV2GSAtRIVHQZNJkTRAZ\nGmnSZCJdo8sDIT09nby8PABKS0sZOHBgq4eLRLratHumYa02Zy/BWm1lWvI0U+YS6Sqm79NmZGSw\nZ88eamtriY2NJTc31/157OzsbGbNmkVxcTEjRowgJCSE9evXm12CSKdkPpTJH//vHzk85LDPc8Wf\njSfzoUwTqhLpOqYHQkFBQbtjVq9ebfa3FfFZcHAwGakZVByrwBXZ+RPM1horGfYM3RJbehxdqSxy\njaWPLSXlbApc6OQEDZBSk8LSx5aaWpdIV1AgiFyjf//+bH59M8nHkzseCg2QfCKZza9tVl8E6ZEU\nCCLfERYWxo43d5D6eSrWWu9OMltrrKSeSmXHmzvUD0F6LAWCSCvCwsLYvmE7y+KWMfajsVjPWFt+\nJLUJrGesjPt4HM+PfJ7t+dsVBtKjqYVmX6Geyp3mdDrJ35jPzrKd1NTXcJnLBBFEZGgk05LVU1kC\niy/vnQoEEZFexJf3Th0yEhERQIEgIiLNFAgiIgIoEEREpJkCQUREAAWCiIg0UyCIiAigQBARkWYK\nBBERARQIIiLSTIEgIiKAAkFERJopEEREBPBTIGzbto1Ro0YRFxfHiy++2GK7w+EgPDycpKQkkpKS\nWLZsmT/KEBGRDggye0KXy8XixYvZuXMnMTEx3H333aSnpzN69GiPcampqRQVFZn97UVEpJNM30Mo\nLy9nxIgRDBs2jODgYObNm8c777zTYpx6HYiIBBbT9xBOnz5NbGys+/nQoUMpKyvzGGOxWNi/fz8J\nCQnExMSwYsUK4uPjW8yVk5Pj/rfdbseujl8iIh4cDgcOh8OUuUwPBIvF0u6Y8ePHU1lZic1mY+vW\nrcyZM4djx461GHdtIIiISEvf/WM5Nze303OZfsgoJiaGyspK9/PKykqGDh3qMSYsLAybzQbAzJkz\ncTqdnDt3zuxSRESkA0wPhAkTJnD8+HFOnjxJY2MjGzduJD093WNMdXW1+xxCeXk5hmEwaNAgs0sR\nEZEOMP2QUVBQEKtXr+a+++7D5XKxcOFCRo8ezdq1awHIzs5m06ZNrFmzhqCgIGw2G4WFhWaXISIi\nHWQxAvTjPhaLRZ9EEhHpIF/eO3WlsoiIAAoEERFppkAQERFAgSAiIs0UCCIiAigQRESkmQJBREQA\nBYKIiDRTIIiICKBAEBGRZgoEEREBFAgiItJMgSAiIoACQUREmikQREQEUCCIiEgzBYKIiAAKBBER\naaZA8JHD4ejuEryiOs3TE2oE1Wm2nlKnL/wSCNu2bWPUqFHExcXx4osvtjpmyZIlxMXFkZCQwMGD\nB/1RRpfoKf+TqE7z9IQaQXWarafU6QvTA8HlcrF48WK2bdtGRUUFBQUFfPLJJx5jiouLOXHiBMeP\nH2fdunUsWrTI7DJERKSDTA+E8vJyRowYwbBhwwgODmbevHm88847HmOKiorIysoCIDk5mfPnz1Nd\nXW12KSIi0hGGyd5++23j0UcfdT/Pz883Fi9e7DFm9uzZxnvvved+PnXqVOPAgQMeYwA99NBDDz06\n8eisIExwp27hAAAFy0lEQVRmsVi8GnflPb/tr/vudhER8S/TDxnFxMRQWVnpfl5ZWcnQoUOvO6aq\nqoqYmBizSxERkQ4wPRAmTJjA8ePHOXnyJI2NjWzcuJH09HSPMenp6eTl5QFQWlrKwIEDiY6ONrsU\nERHpANMPGQUFBbF69Wruu+8+XC4XCxcuZPTo0axduxaA7OxsZs2aRXFxMSNGjCAkJIT169ebXYaI\niHRUp88+mGTr1q3G9773PWPEiBHGCy+80OqYxx9/3BgxYoQxbtw448MPP+ziCq9or87du3cbN910\nk5GYmGgkJiYazz//fJfX+MgjjxhRUVHGnXfe2eaYQFjL9uoMhLU0DMP44osvDLvdbsTHxxtjxowx\nVq1a1eq47l5Tb+rs7jW9ePGiMXHiRCMhIcEYPXq08ctf/rLVcd29lt7U2d1rea3Lly8biYmJxuzZ\ns1vd3tH17NZAuHz5snHHHXcYn3/+udHY2GgkJCQYFRUVHmO2bNlizJw50zAMwygtLTWSk5MDss7d\nu3cbaWlpXV7btfbu3Wt8+OGHbb7RBsJaGkb7dQbCWhqGYZw5c8Y4ePCgYRiGUVdXZ4wcOTIg///0\nps5AWNOGhgbDMAzD6XQaycnJxr59+zy2B8JaGkb7dQbCWl61cuVKY/78+a3W05n17NZbV/SUaxa8\nqRO6/5NRkyZNIiIios3tgbCW0H6d0P1rCTB48GASExMBCA0NZfTo0Xz55ZceYwJhTb2pE7p/TW02\nGwCNjY24XC4GDRrksT0Q1tKbOqH71xKufBinuLiYRx99tNV6OrOe3RoIp0+fJjY21v186NChnD59\nut0xVVVVXVZjWzV8t06LxcL+/ftJSEhg1qxZVFRUdGmN3giEtfRGIK7lyZMnOXjwIMnJyR6vB9qa\ntlVnIKxpU1MTiYmJREdHM3nyZOLj4z22B8patldnIKwlwM9//nNeeukl+vVr/W28M+vZrYFg1jUL\n/ubN9xs/fjyVlZV89NFHPP7448yZM6cLKuu47l5LbwTaWtbX1/PjH/+YVatWERoa2mJ7oKzp9eoM\nhDXt168fhw4doqqqir1797Z6b6BAWMv26gyEtXz33XeJiooiKSnpunsrHV3Pbg2EnnLNgjd1hoWF\nuXc1Z86cidPp5Ny5c11aZ3sCYS29EUhr6XQ6mTt3Lg8//HCrv/iBsqbt1RlIaxoeHs7999/PgQMH\nPF4PlLW8qq06A2Et9+/fT1FREcOHDycjI4Ndu3axYMECjzGdWc9uDYSecs2CN3VWV1e707i8vBzD\nMFo99tidAmEtvREoa2kYBgsXLiQ+Pp4nn3yy1TGBsKbe1Nnda1pbW8v58+cBuHjxIjt27CApKclj\nTCCspTd1dvdaAixfvpzKyko+//xzCgsLmTJlinvtrurMepp+HUJH9JRrFrypc9OmTaxZs4agoCBs\nNhuFhYVdXmdGRgZ79uyhtraW2NhYcnNzcTqd7hoDYS29qTMQ1hLgvffeY8OGDYwbN879prB8+XK+\n+OILd62BsKbe1Nnda3rmzBmysrJoamqiqamJzMxMpk6dGnC/697U2d1r2Zqrh4J8XU+LEQiny0VE\npNupY5qIiAAKBBERaaZAEBERQIEgIiLNFAginTBjxgwiIiJIS0vr7lJETKNAEOmE//zP/yQ/P7+7\nyxAxlQJB5Dref/99EhISuHTpEg0NDdx5551UVFQwZcqUVm9jIdKTdeuFaSKB7u677yY9PZ1nn32W\nixcvkpmZ2eJmZyK9hQJBpB2//vWvmTBhAjfeeCOvvPJKd5cj4jc6ZCTSjtraWhoaGqivr+fixYvu\n1wPxTrEivlAgiLQjOzubZcuWMX/+fJ5++mn367rri/Q2OmQkch15eXnccMMNzJs3j6amJr7//e+z\ne/dunnvuOY4ePUp9fT2xsbG88cYbTJ8+vbvLFfGJbm4nIiKADhmJiEgzBYKIiAAKBBERaaZAEBER\nQIEgIiLNFAgiIgLA/wc2K2mFmzI9nQAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 6: x2>=2.5 and x1>=1.5\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([4,1.5,1.5,1.5],[2.5,2.5,2.5,4]);\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGA2QIgFaEhfLXEFU8BMOntjjL82NWHd\ndStxQ05r9yH3NmvX7rtt784Gm7dbJ9ldy25Xt/IEnsDNs98TJrrq6qjkAllarmRq3zAwD8JtFqDJ\nOFzfP8S5nQAZ4BoY8PU4Z85x5vrw4c2nmBfXdc11vS2GYRiIiMh1b0BvFyAiIv5BgSAiIoACQURE\nWigQREQEUCCIiEgLBYKIiAA+DASXy0ViYiKpqaltbl+6dCkxMTHEx8dz8OBBX5UhIiJe8lkgrFq1\niri4OCwWS6ttxcXFnDhxguPHj7Nu3ToWL17sqzJERMRLPgmE6upqiouLefTRR2nrureioiIyMzMB\nSEpK4ty5c9TU1PiiFBER8VKALyb9xS9+wUsvvcQ333zT5vZTp04RHR3tfj58+HCqq6uJjIx0v9bW\nnoWIiHSsqzegMH0P4d133yUiIoLExMRrFvXdbW0FgGEYfv947rnner2G/lQn+H+dfWUtVef1WWd3\nmB4I+/fvp6ioiJEjR5Kens6uXbtYuHChx5ioqCiqqqrcz6urq4mKijK7FBER6QTTA2HFihVUVVXx\n+eefU1hYyNSpU8nLy/MYk5aW5n6ttLSUwYMHexwuEhGRnueTcwhXu3IoaO3atQBkZWUxe/ZsiouL\nGTVqFEFBQaxfv97XZfiM3W7v7RK80lfqBHtvF9ChvrKWqtNcfaXO7rAY3T3o5CMWi6Xbx8Ok77FY\nQP/ZRbquO++dPt9DEJH+aciQIXz11VfXHJMC7Onm9zFjjv4oLCyMs2fPmjqnbl0hIl3y1VdfdfiJ\nF4cJn8wxY47++OgojLtCgSAiIoACQUREWigQREQEUCCIiHTa7Nmzyc/P7+0yTKdAEJF+Z8SIEdhs\nNkJCQhg6dCiPPPIIjY2NXZorOzubjIwMj9eKi4tbvdYfKBBEpN+xWCy8++671NfX8+GHH3LgwAGW\nL1/e22X5PQWCiPRrt956KzNnzuSf//wnRUVFjB07lrCwMKZMmcLRo0fd41588UWGDx/OTTfdxJgx\nY9i1axfbtm3jd7/7HRs3biQkJITExETg8lXLr7/+OhcvXmTw4MEcOXLEPU9tbS02m426ujrg8g0/\nExISCAsL41/+5V84fPhwzy5AJygQRKRfunK1blVVFVu3biUkJIQFCxbw8ssvU1dXx+zZs0lNTcXp\ndPLpp5/y6quvcuDAAb755hu2b9/OiBEjmDlzJr/+9a+ZP38+9fX17u6OFosFi8XCDTfcwLx58ygo\nKHB/37/85S/Y7XZuueUWDh48yKJFi/jzn//M2bNnycrKIi0tjaampl5Zk47oSmUR6TyHg+cAsrOv\nPS4np/1tlZWXHwAjRlx+dHaOq9ntlx9cDoO5c+cSEBBAaGgoc+bMYejQoTQ3NzNt2jQAnnrqKVat\nWsU//vEPbr31Vi5evMiRI0e4+eabue2229zTdnRb6QULFpCVleU+JPXWW2+5u0CuW7eOrKws7r77\nbgAWLlzIihUrKC0t5d577/Xu5+pBCgQR6Ty7nRwun3DtkDdjTJ7DYrHwzjvvMHXqVPdrP//5zz3e\n6C0WC9HR0Zw6dYp7772XP/7xj2RnZ3PkyBHuu+8+fv/73zNs2LAOv5fdbuf8+fOUl5cTERHBRx99\nxI9+9CMATp48SV5eHq+88op7vNPp5PTp0536eXqKDhmJyHXh1ltv5eTJk+7nhmFQVVXl7sWSnp7O\nvn37OHnyJBaLhaeffhrouHuj1WrlwQcfpKCggIKCAlJTUwkKCgLgtttu4z//8z/56quv3I+GhgYe\neughH/2U3aNAEJHrwoMPPsiWLVvYtWsXTqeT3NxcBg0axPe//32OHTvGrl27uHjxIjfccAODBg3C\narUCMHToUCorK1sdNrr6+YIFCygsLOStt95iwYIF7tf/9V//lT/96U+Ul5djGAaNjY1s2bKFhoaG\nnvmhO0mBICLXhdGjR7NhwwYef/xxwsPD2bJlC5s3byYgIICLFy/yzDPPEB4ezrBhw6irq+N3v/sd\nAA888AAAN998MxMnTnTPd/Wew6RJkwgODub06dPMmjXL/fpdd93Fn//8Z5YsWcKQIUOIiYlp1TDM\nn6gfgvgV9UPoO7z6Hc3O7v45BDPm6IfaW//uvHdqD0FERAAFgoiItFAgiIgI4INzCN9++y0pKSlc\nvHiRpqYmfvjDH7pPzlzhcDj44Q9/yO233w7AvHnzePbZZz0L0zmE65LOIfQdbf2OOp1O8grz+HvZ\n3znTeAbX559hHXkHEUERTL9nOhkPZRAYGHjNec2Y43rgi3MIPjmpfP78eWw2G5cuXSI5OZmVK1eS\nnJzs3u5wOPj9739PUVFR+4UpEK5LCoS+4+rf0aamJnLX5FKwt4CK8ApckS7P4w/NYK2xEncmjnR7\nOsseW8bAgQM95jNjjuuJLwLBJ1cq22w24PJ/YJfLxZAhQ1qN0Zu9SP9QX19P6qJUSiJLcI13tT1o\nALiGuTg87DAVxyr4W8bf2PzaZkJCQkybQ7rPJ4HQ3NzMhAkT+Oyzz1i8eDFxcXEe2y0WC/v37yc+\nPp6oqChWrlzZagx4XhZvt9uxt9ynRET8Q319PTMWzqBsdBnYvPsaV7iLPbY9zMicwY43dwB0e47r\nORQcDgcOh8OUuXx6HcLXX3/NfffdxwsvvODxZl5fX4/VasVms7F161aeeOIJjh075lmYDhldl3TI\nqO+wWCykPJDCnpF7vH4j99AIk//fZLDAvtv3dXmOlMoUtm/Yft0dPupz1yGEhoZy//33c+DAAY/X\nQ0JC3IeVZs2ahdPp5OzZs74sRUTMZoOSyJKuvZEDBEHJVyWURHRzjogScv+U28UJfK8vtds0PRDq\n6uo4d+4cABcuXGDHjh3uphJX1NTUuBPsyj0+2jrPICL+yel0wq3guqWd4/3ecIFx0cCI6N4uoSvc\nRYGj4HJNLUaMGEFkZCTnz593v/baa68xZcqUbn2vjvT1dpumB8Lp06eZOnUqCQkJJCUlkZqayrRp\n01i7di1r164FYNOmTYwbN46EhASefPJJCgsLzS5DRHwof2M+pHRzkk+B1qcOu6QiouJyTVdpbm5m\n1apV5nyD64TpgTBu3Dg+/PBDDh06xMcff8y///u/A5CVlUVWVhYA//Zv/8Y///lPDh06xP79+7nn\nnnvMLkNEfGhn6U6I6uYkNUDH7Qa84op0sbNsp/u5xWLhqaeeYuXKlXz99detxh89epQZM2Zw8803\nM2bMGN5++233tv/5n/8hNTWV0NBQJk2axLPPPsvkyZPd25944gluu+02QkNDmThxIiUlJQD9ot2m\nrlQWkU4703jGnHcPs96BBkBtQ63HSxMnTsRut7Ny5UqP18+fP8+MGTN4+OGHqa2tpbCwkJ///Od8\n8sknwOU/WENCQqipqeHNN98kLy+v1Z1NP/roI7766isWLFjAAw88QFNTU79ot6lAEJFOc9GNcwdX\nXLvvTKdd4pLn9BYLv/3tb3nllVfcf4HD5b/CR44cSWZmJgMGDCAhIYEf//jHvP3227hcLv7617+S\nk5PDoEGDiI2NJTMz0+NTOz/96U8JCwtjwIAB/PKXv+TixYt8+umngHftNq8+RH51/4Sr221aLBYW\nLlzIDTfcQGlpqSnr4w0Fgoh0mhVr9ycx+ePFAW1cVjV27FjmzJnDCy+84P4r/+TJk5SVlREWFuZ+\nvPXWW9TU1FBXV8elS5eIjo52zzF8+HCPOa9cNzV48GDCwsL4+uuvPQLnWq5ut1lZWdmq3WZubq5H\nXdXV1T3ablM9lUWk0yKCIqCZ7v9JacYcLfOEB4e3uSknJ4cJEyawbNkyAKKjo0lJSWH79u2txrpc\nLgICAqiqqiImJgaAqqoq9/Z9+/bx0ksvsWvXLsaOHQvAkCFD3HsFnWm3GRER0Wa7zV//+ted/OHN\noz0EEem06fdMh1PdnCQSMOmPX2uNlelJ09vcdscdd/DQQw+xatUqLBYLc+bM4dixY2zYsAGn04nT\n6eT999/n6NGjWK1WfvzjH5Odnc2FCxc4evQo+fn57jf6+vp6AgICuOWWW2hqauK3v/0t33zzjft7\n9fV2mwoEEem0jIcyYE83J/keUGFGNRB3Ju5yTe34zW9+474mITg4mO3bt1NYWEhUVBTDhg3jmWee\ncZ+8Xb16NV9//TVDhw4lMzOT9PR091XQM2fOZObMmYwePZoRI0Zw4403ctttt7m/T19vt6kWmuJX\ndOuKvsMSZMH6iBVXeNdPMFv2WmAM3bo4zVpr5fnRz/PM0me6PMe1PP3005w5c4b169f7ZP6u6nO3\nrhCRfuw8JJ9JhvMdD21TIySHJXd/jtpklj22rIsTtPbpp5/y8ccfYxgG5eXlvPHGG+4Tv/2dAkFE\numzz65tJOp7U+Tf0Rkg6kcSW9VvY8saWbs2x+bXNpt7Yrr6+nnnz5hEcHMz8+fN56qmnSEtLM21+\nf6ZDRuJXdMio77jyO+rRy8CLextZa60k1ya33w+hi3Ncb3TISET8TkhICNs3bGd5zHLGfTQO62nr\n5Y+TXq0ZrKetjP94PM+Pfp7t+ds93sjNmEO6T3sI1wuHA/pAg6E+sYfQR9bS19rrqZy/MZ+dZTup\nbajlEpcIIIDw4HCmJ3nfU7m7c1wP+kxPZTMoEEyWnX354ef6RCD0kbX0Nf2O9q4+01NZRPq/sLCw\nDq/MFd8JCwszfU4Fgoh0ibddDrvSdxlwf4roeu+Z3JN0UllEfKapqYnURamdDwOAICgbVUbqotQe\nvQX09UyBICI+k7smt/t9l/28Z3J/okAQEZ9wOp0U7C3oXt9l2u6ZLL6hQBARn8jfmE9FuDl3r2ur\nZ7KYz/RA+Pbbb0lKSiIhIYG4uDieeabtG04tXbqUmJgY4uPj3a3mRKT/2Fm6E1ekCZ3VaN0zWXzD\n9E8ZDRo0iN27d2Oz2bh06RLJycmUlJSQnJzsHlNcXMyJEyc4fvw4ZWVlLF68uEfbxImI751pPANt\n96zpvDZ6Jov5fPKxU5vt8hmkpqYmXC4XQ4YM8dheVFREZmYmAElJSZw7d46amhoiIyM9xmVfdfGP\n3W7HrqtDW3M4Lj86kpPj3Xx2+/V7Fa7W0lSm9F2+ynd7JstlDocDhzf/33rBJ4HQ3NzMhAkT+Oyz\nz1i8eDFxcXEe20+dOtWqZ2l1dfU1A0Ha0Zk3Ha3ntWktTWVK3+WrtNUzWVr/sZzj7R8sbfDJSeUB\nAwZw6NAhqqur2bt3b5vp9d1Lq3XFo0j/4u67bIZr9EwW8/j0U0ahoaHcf//9HDhwwOP1qKgoj8bV\n1dXVREVF+bIUEelh0++ZjrXGnL2Ea/VMFvOYHgh1dXWcO3cOgAsXLrBjxw4SExM9xqSlpbl7hZaW\nljJ48OBWh4tEpG/LeCiDuNq4jgd6oaOeyWIO0w/KnT59mszMTJqbm2lubiYjI4Np06axdu1aALKy\nspg9ezbFxcWMGjWKoKAgv+tVKiLdFxgYSHpKOhXHKrrVd9laayXdnq5bXvcA3f76etFHbtms21/3\nL01NTfzg4R+wZ+Sert2+ohFSTqawPX+7qW0y+zN1TBMRvzRw4MBu9102u2eytE+BICI+FRISwo43\nd5DyeQrWOu9OMltrraScTNGtr3uYAkFEfE49k/sGnUO4XvSRPsB94hxCH1lLf6Weyb6lnsrSb/SJ\nQBDxYzqpLCIi3aZAEBERQIEgIiItFAgiIgIoEEREpIUCQUREAAWCiIi0UCCIiAigQBARkRYKBBER\nARQIIiLSQoEgIiKAAkFERFqYHghVVVVMmTKFsWPHcuedd/Lyyy+3GuNwOAgNDSUxMZHExESWL19u\ndhkiItJJAWZPGBgYyB/+8AcSEhJoaGjgrrvuYsaMGcTGxnqMS0lJoaioyOxvLyIiXWT6HsLQoUNJ\nSEgAIDg4mNjYWL788stW49TrQETEv5i+h3C1yspKDh48SFJSksfrFouF/fv3Ex8fT1RUFCtXriQu\nLq7V12dnZ7v/bbfbsatLVb8XFna5SY6IeMvR8ug+n3VMa2howG638+yzzzJ37lyPbfX19VitVmw2\nG1u3buWJJ57g2LFjnoWpY5qISKf5XQtNp9PJnDlzmDVrFk8++WSH40eOHMkHH3zAkCFD/rcwBYKI\nSKf5VQtNwzBYtGgRcXFx7YZBTU2Nu+Dy8nIMw/AIAxER6Xmmn0N477332LBhA+PHjycxMRGAFStW\n8MUXXwCQlZXFpk2bWLNmDQEBAdhsNgoLC80uQ0REOsln5xC6S4eMREQ6z68OGYmISN+kQBAREUCB\nICIiLRQIIiICKBBERKSFAkFERAAFgoiItFAgiIgIoEAQEZEWCgQREQEUCCIi0kKBICIigI87pon0\nB06nk7zCPP5e9nfONJ7BhQsrViKCIph+z3QyHsogMDCwt8sU6Tbd7VSkHU1NTeSuyaVgbwEV4RW4\nIl2e+9TNYK2xEncmjnR7OsseW8bAgQN7rV4R8MOOaWZQIEhvqq+vJ3VRKiWRJbhucXU43lprJbk2\nmc2vbSYkJKQHKhRpmwJBxET19fXMWDiDstFlYOvEFzZC0okkdry5Q6EgvUaBIGKSpqYmfvDwD9gz\nck/nwuCKRkipTGH7hu06fCS9Qg1yREySuyaXksiSroUBQBCURJSQ+6dcU+sS6QkKBJEWTqeTgr0F\nXp0zuBZXuIsCRwFOp9OkykR6xjUD4ZtvvuGzzz5r9frHH3/c7tdUVVUxZcoUxo4dy5133snLL7/c\n5rilS5cSExNDfHw8Bw8e7GTZIubL35hPRXiFKXNVRFSQvzHflLlEekq7gfCXv/yFMWPGMG/ePMaO\nHUt5ebl7W2ZmZrsTBgYG8oc//IEjR45QWlrKq6++yieffOIxpri4mBMnTnD8+HHWrVvH4sWLTfhR\nRLpnZ+nOyx8tNYEr0sXOsp2mzCXSU9oNhP/6r//igw8+4NChQ6xfv56FCxfy17/+tcMJhw4dSkJC\nAgDBwcHExsby5ZdfeowpKipyh0pSUhLnzp2jpqamOz+HSLedaTxj3kHUAVDbUGvSZCI9o90rlV0u\nF8OGDQNg0qRJ7N69mzlz5lBVVeX15JWVlRw8eJCkpCSP10+dOkV0dLT7+fDhw6muriYyMtJjXHZ2\ntvvfdrsdu93u9fcW6SwX5uwdXHGJS6bOJ9IWh8OBw+EwZa52A+Gmm27is88+44477gBg2LBh7N69\nmx/96EccOXKkw4kbGhr4yU9+wqpVqwgODm61/bsfi7JYLK3GXB0IIr5mxWrqfAG6M4z0gO/+sZyT\nk9PludrdQf7v//5vmpubqaj435NsN910E9u2beP111+/5qROp5N58+bx8MMPM3fu3Fbbo6KiPPY0\nqquriYqK6kr9IqaJCIqAZpMma4bw4HCTJhPpGe0GQkJCAjExMTz44IO8+OKLGIbB+fPn+eUvf8mr\nr77a7oSGYbBo0SLi4uJ48skn2xyTlpZGXl4eAKWlpQwePLjV4SKRnjb9nulYa8zZS7DWWJmeNN2U\nuUR6SodXKjc2NvL0009z4MABGhoaWLBgAb/61a8YMKDtLCkpKeHee+9l/Pjx7sNAK1as4IsvvgAg\nKysLgCVLlrBt2zaCgoJYv349EyZM8CxMVypLD3M6ndw1/y4Ojz/c7bnGfTSODzZ+oLugSo/rzntn\nhwc5AwICuPHGG7lw4QLffvstt99+e7thAJCcnExzc8f73atXr+5cpSI+FhgYSHpKOhXHKnCFd/0E\ns7XWSro9XWEgfU6HH7KbNGkSgwYN4sCBA+zbt4+33nqLBx54oCdqE+lxyx5bRvKZZDjfxQkaIbk2\nmWWPLTO1LpGe0OEho/fff5+7777b47W8vDwWLlzo28J0yEh6SX19PTMyZ1AWo7udSt+ju52KmEz9\nEKSv0t1ORUwWEhLC9g3bWR6znHEfjcN62tr6I6nNYD1tZfzH43l+9PNsz9+uMJA+TXsIIh1wOp3k\nb8xnZ9lOahtqucQlAgggPDic6UnqqSz+RYeMREQE0CEjERExgQJBREQABYKIiLRQIIiICKBAEBGR\nFgoEEREBFAgiItJCgSAiIoACQUREWigQREQEUCCIiEgLBYKIiAAKBBERaeGTQPjZz35GZGQk48aN\na3O7w+EgNDSUxMREEhMTWb58uS/KEBGRTgjwxaSPPPIIjz/++DXbbKakpFBUVOSLby8iIl3gkz2E\nyZMnExYWds0x6nUgIuJffLKH0BGLxcL+/fuJj48nKiqKlStXEhcX12pcdna2+992ux273d5zRYqI\n9AEOhwOHw2HKXD7rmFZZWUlqaiqHDx9uta2+vh6r1YrNZmPr1q088cQTHDt2zLMwdUwTEem0Ptcx\nLSQkBJvNBsCsWbNwOp2cPXu2N0oREZEWvRIINTU17gQrLy/HMAyGDBnSG6WIiEgLn5xDSE9PZ8+e\nPdTV1REdHU1OTg5OpxOArKwsNm3axJo1awgICMBms1FYWOiLMkREpBN8dg6hu3QOQUSk8/rcOQQR\nEfE/CgQREQEUCCIi0kKBICIigAJBRERaKBBERARQIIiISAsFgoiIAAoEERFpoUAQERFAgSAiIi0U\nCCIiAvRSxzTpBQ4HqONclzidTvIK8/h72d8503gGFy6sWIkIimD6PdPJeCiDwMDA3i5TpNt0t9Pr\nRXb25Yd4rampidw1uRTsLaAivAJXpMtzn7oZrDVW4s7EkW5PZ9ljyxg4cGCv1SsC3Xvv1B6CSBvq\n6+tJXZRKSWQJrvGutgcNANcwF4eHHabiWAV/y/gbm1/bTEhISM8WK2ISnUMQ+Y76+npmLJzBnpF7\ncN3SThh8hyvcxZ7/s4cZmTOor6/3cYUivqFAELlKU1MTqYtSKRtdBrZOfnEQlI0qI3VRKk1NTT6p\nT8SXFAgiV8ldk0tJZEnnw+CKICiJKCH3T7mm1iXSExQIIi2cTicFewu8PkzUHle4iwJHgbuPuEhf\nYXog/OxnPyMyMpJx48a1O2bp0qXExMQQHx/PwYMHzS5BpEvyN+ZTEV5hylwVERXkb8w3ZS6RnmJ6\nIDzyyCNs27at3e3FxcWcOHGC48ePs27dOhYvXmx2CSJdsrN05+WPlprAFeliZ9lOU+YS6SmmB8Lk\nyZMJCwtrd3tRURGZmZkAJCUlce7cOWpqaswuQ6TTzjSeMe83YgDUNtSaNJlIz+jx6xBOnTpFdHS0\n+/nw4cOprq4mMjKy1djsqy6kstvt2HWlbWsOx+VHR3JyvJvPbr9ur2h2Yc7ewRWXuGTqfCJtcTgc\nOLx5D/BCr1yY9t2r6CwWS5vjsnVlbcc68wau9bwmK1ZT5wvQdZ/SA777x3KOt3/8taHHP2UUFRVF\nVVWV+3l1dTVRUVE9XYZIKxFBEdBs0mTNEB4cbtJkIj2jxwMhLS2NvLw8AEpLSxk8eHCbh4tEetr0\ne6ZjrTFnL8FaY2V60nRT5hLpKabv06anp7Nnzx7q6uqIjo4mJyfH/XnsrKwsZs+eTXFxMaNGjSIo\nKIj169ebXYJIl2Q8lMEf/+8fOTzscLfnijsTR8ZDGSZUJdJzTA+EgoKCDsesXr3a7G8r0m2BgYGk\np6RTcawCV3jXTzBba62k29N1S2zpc3SlsshVlj22jOQzyXC+ixM0QnJtMsseW2ZqXSI9QYEgcpWB\nAwey+fXNJB1P6nwoNELSiSQ2v7ZZfRGkT1IgiHxHSEgIO97cQcrnKVjrvDvJbK21knIyhR1v7lA/\nBOmzFAgibQgJCWH7hu0sj1nOuI/GYT1tbf2R1GawnrYy/uPxPD/6ebbnb1cYSJ+mFprXC/VU7jKn\n00n+xnx2lu2ktqGWS1wigADCg8OZnqSeyuJfuvPeqUAQEelHuvPeqUNGIiICKBBERKSFAkFERAAF\ngoiItFAgiIgIoEAQEZEWCgQREQEUCCIi0kKBICIigAJBRERaKBBERARQIIiISAsFgoiIAD4KhG3b\ntjFmzBhiYmJ48cUXW213OByEhoaSmJhIYmIiy5cv90UZIiLSCQFmT+hyuViyZAk7d+4kKiqKu+++\nm7S0NGJjYz3GpaSkUFRUZPa3FxGRLjJ9D6G8vJxRo0YxYsQIAgMDmT9/Pu+8806rcep1ICLiX0zf\nQzh16hTR0dHu58OHD6esrMxjjMViYf/+/cTHxxMVFcXKlSuJi4trNVd2drb733a7Hbs6fomIeHA4\nHDgcDlPmMj0QLBZLh2MmTJhAVVUVNpuNrVu3MnfuXI4dO9Zq3NWBICIirX33j+WcnJwuz2X6IaOo\nqCiqqqrcz6uqqhg+fLjHmJCQEGw2GwCzZs3C6XRy9uxZs0sREZFOMD0QJk6cyPHjx6msrKSpqYmN\nGzeSlpbmMaampsZ9DqG8vBzDMBgyZIjZpYiISCeYfsgoICCA1atXc9999+FyuVi0aBGxsbGsXbsW\ngKysLDZt2sSaNWsICAjAZrNRWFhodhkiItJJFsNPP+5jsVj0SSQRkU7qznunrlQWERFAgSAiIi0U\nCCIiAigQRESkhQJBREQABYKIiLRQIIiICKBAEBGRFgoEEREBFAgiItJCgSAiIoACQUREWigQREQE\nUCCIiEgLBYKIiAAKBBERaaFAEBERQIEgIiItFAjd5HA4ersEr6hO8/SFGkF1mq2v1NkdPgmEbdu2\nMWbMGGJiYnjxxRfbHLN06VJiYmKIj4/n4MGDviijR/SV/0lUp3n6Qo2gOs3WV+rsDtMDweVysWTJ\nErZt20ZFRQUFBQV88sknHmOKi4s5ceIEx48fZ926dSxevNjsMkREpJNMD4Ty8nJGjRrFiBEjCAwM\nZP78+bzzzjseY4qKisjMzAQgKSmJc+fOUVNTY3YpIiLSGYbJ3n77bePRRx91P8/PzzeWLFniMWbO\nnDnGe++9534+bdo048CBAx5jAD300EMPPbrw6KoATGaxWLwad/k9v/2v++52ERHxLdMPGUVFRVFV\nVeV+XlUAvezUAAAFqklEQVRVxfDhw685prq6mqioKLNLERGRTjA9ECZOnMjx48eprKykqamJjRs3\nkpaW5jEmLS2NvLw8AEpLSxk8eDCRkZFmlyIiIp1g+iGjgIAAVq9ezX333YfL5WLRokXExsaydu1a\nALKyspg9ezbFxcWMGjWKoKAg1q9fb3YZIiLSWV0++2CSrVu3Gt/73veMUaNGGS+88EKbYx5//HFj\n1KhRxvjx440PP/ywhyu8rKM6d+/ebdx0001GQkKCkZCQYDz//PM9XuMjjzxiREREGHfeeWe7Y/xh\nLTuq0x/W0jAM44svvjDsdrsRFxdnjB071li1alWb43p7Tb2ps7fX9MKFC8akSZOM+Ph4IzY21vjV\nr37V5rjeXktv6uzttbzapUuXjISEBGPOnDltbu/sevZqIFy6dMm44447jM8//9xoamoy4uPjjYqK\nCo8xW7ZsMWbNmmUYhmGUlpYaSUlJflnn7t27jdTU1B6v7Wp79+41Pvzww3bfaP1hLQ2j4zr9YS0N\nwzBOnz5tHDx40DAMw6ivrzdGjx7tl/9/elOnP6xpY2OjYRiG4XQ6jaSkJGPfvn0e2/1hLQ2j4zr9\nYS2vyM3NNRYsWNBmPV1Zz169dUVfuWbBmzqh9z8ZNXnyZMLCwtrd7g9rCR3XCb2/lgBDhw4lISEB\ngODgYGJjY/nyyy89xvjDmnpTJ/T+mtpsNgCamppwuVwMGTLEY7s/rKU3dULvryVc/jBOcXExjz76\naJv1dGU9ezUQTp06RXR0tPv58OHDOXXqVIdjqqure6zG9mr4bp0Wi4X9+/cTHx/P7Nmzqaio6NEa\nveEPa+kNf1zLyspKDh48SFJSksfr/ram7dXpD2va3NxMQkICkZGRTJkyhbi4OI/t/rKWHdXpD2sJ\n8Itf/IKXXnqJAQPafhvvynr2aiCYdc2Cr3nz/SZMmEBVVRUfffQRjz/+OHPnzu2Byjqvt9fSG/62\nlg0NDfzkJz9h1apVBAcHt9ruL2t6rTr9YU0HDBjAoUOHqK6uZu/evW3eG8gf1rKjOv1hLd99910i\nIiJITEy85t5KZ9ezVwOhr1yz4E2dISEh7l3NWbNm4XQ6OXv2bI/W2RF/WEtv+NNaOp1O5s2bx8MP\nP9zmL76/rGlHdfrTmoaGhnL//fdz4MABj9f9ZS2vaK9Of1jL/fv3U1RUxMiRI0lPT2fXrl0sXLjQ\nY0xX1rNXA6GvXLPgTZ01NTXuNC4vL8cwjDaPPfYmf1hLb/jLWhqGwaJFi4iLi+PJJ59sc4w/rKk3\ndfb2mtbV1XHu3DkALly4wI4dO0hMTPQY4w9r6U2dvb2WACtWrKCqqorPP/+cwsJCpk6d6l67K7qy\nnqZfh9AZfeWaBW/q3LRpE2vWrCEgIACbzUZhYWGP15mens6ePXuoq6sjOjqanJwcnE6nu0Z/WEtv\n6vSHtQR477332LBhA+PHj3e/KaxYsYIvvvjCXas/rKk3dfb2mp4+fZrMzEyam5tpbm4mIyODadOm\n+d3vujd19vZatuXKoaDurqfF8IfT5SIi0uvUMU1ERAAFgoiItFAgiIgIoEAQEZEWCgSRLpg5cyZh\nYWGkpqb2dikiplEgiHTBf/zHf5Cfn9/bZYiYSoEgcg3vv/8+8fHxXLx4kcbGRu68804qKiqYOnVq\nm7exEOnLevXCNBF/d/fdd5OWlsazzz7LhQsXyMjIaHWzM5H+QoEg0oHf/OY3TJw4kRtvvJFXXnml\nt8sR8RkdMhLpQF1dHY2NjTQ0NHDhwgX36/54p1iR7lAgiHQgKyuL5cuXs2DBAp5++mn367rri/Q3\nOmQkcg15eXnccMMNzJ8/n+bmZr7//e+ze/dunnvuOY4ePUpDQwPR0dG88cYbzJgxo7fLFekW3dxO\nREQAHTISEZEWCgQREQEUCCIi0kKBICIigAJBRERaKBBERASA/w/FilwnMVjxngAAAABJRU5ErkJg\ngg==\n"
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 7: x2>=2.5 and x2>=1.5\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([4,2.5,2.5,2.5],[2.5,2.5,2.5,4]);\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGA2QIoFaEhfLXEVU8BMOntjjL82NWHd\ndStxQ05r9yH3NmvX7rtt784Gm7dbJ91dy25Xt/IEnsDNs98TJrrq6qjkAllarmRq3zAwD8JtFqDJ\nOFzfP8S5nQAZmGuGQV+Pc+YcZ66Pn3nzKefFdV1zXW+LYRgGIiJy3evT0wWIiEhwUCCIiAigQBAR\nkVYKBBERARQIIiLSSoEgIiKAHwPB5XKRnJxMenp6u9sXL15MfHw8iYmJHDhwwF9liIiIl/wWCCtX\nriQhIQGLxdJmW0lJCcePH+fYsWOsXbuWhQsX+qsMERHxkl8CoaamhpKSEh599FHau+6tuLiY7Oxs\nAFJSUjh79iy1tbX+KEVERLwU4o9Jf/GLX/DSSy/xzTfftLv95MmTxMXFuZ8PGTKEmpoaYmJi3K+1\nt2chIiKd6+4NKEzfQ3j33XeJjo4mOTn5qkV9d1t7AWAYRtA/nnvuuR6vQXWqxvYe0Dvq7C3r2Vvq\n9IXpgbBv3z6Ki4sZNmwYmZmZ7Ny5k/nz53uMiY2Npbq62v28pqaG2NhYs0sREZEuMD0Qli1bRnV1\nNZ9//jlFRUVMnjyZ/Px8jzEZGRnu18rKyhgwYIDH4SIREQk8v5xDuNLlQ0Fr1qwBICcnh5kzZ1JS\nUsLw4cMJCwtj3bp1/i7Db+x2e0+X4BXVaZ7eUOMl9p4uwCu9ZT17S52+sBi+HnTyE4vF4vPxMJHr\nmcUC+id0/fHls9Pvewgicm0aOHAgX3311VXHpAG7fXwfM+a4FkVGRnLmzBlT59StK0SkW7766qtO\nv/HiMOGbOWbMcS0+Ogvj7lAgiIgIoEAQEZFWCgQREQEUCCIiXTZz5kwKCgp6ugzTKRBE5JozdOhQ\nbDYbERERDBo0iEceeYSmpqZuzZWbm0tWVpbHayUlJW1euxYoEETkmmOxWHj33XdpaGjgww8/ZP/+\n/SxdurSnywp6CgQRuabdeuutTJ8+nX/+858UFxczevRoIiMjmTRpEkeOHHGPe/HFFxkyZAg33XQT\nI0eOZOfOnWzdupXf/e53bNiwgYiICJKTk4FLVy2//vrrXLhwgQEDBnD48GH3PHV1ddhsNurr64FL\nN/xMSkoiMjKSf/mXf+HQoUOBXYAuUCCIyDXp8tW61dXVbNmyhYiICObNm8fLL79MfX09M2fOJD09\nHafTyaeffsqrr77K/v37+eabb9i2bRtDhw5l+vTp/PrXv2bu3Lk0NDS4uztaLBYsFgs33HADc+bM\nobCw0P2+f/nLX7Db7dxyyy0cOHCABQsW8Oc//5kzZ86Qk5NDRkYGzc3NPbImndGVyiLSdQ4HzwHk\n5l59XF5ex9uqqi49AIYOvfTo6hxXstsvPbgUBrNnzyYkJIT+/fsza9YsBg0aREtLC1OmTAHgqaee\nYuXKlfzjH//g1ltv5cKFCxw+fJibb76Z2267zT1tZ7eVnjdvHjk5Oe5DUm+99Za7C+TatWvJycnh\n7rvvBmD+/PksW7aMsrIy7r33Xu9+rgBSIIhI19nt5HHphGunvBlj8hwWi4V33nmHyZMnu1/7+c9/\n7vFBb7FYiIuL4+TJk9x777388Y9/JDc3l8OHD3Pffffx+9//nsGDB3f6Xna7nXPnzlFRUUF0dDQf\nffQRP/rRjwA4ceIE+fn5vPLKK+7xTqeTU6dOdennCRQdMhKR68Ktt97KiRMn3M8Nw6C6utrdiyUz\nM5O9e/dy4sQJLBYLTz/9NNB590ar1cqDDz5IYWEhhYWFpKenExYWBsBtt93Gf/7nf/LVV1+5H42N\njTz00EN++il9o0AQkevCgw8+yObNm9m5cydOp5MVK1bQr18/vv/973P06FF27tzJhQsXuOGGG+jX\nrx9WqxWAQYMGUVVV1eaw0ZXP582bR1FREW+99Rbz5s1zv/6v//qv/OlPf6KiogLDMGhqamLz5s00\nNjYG5ofuIgWCiFwXRowYwfr163n88ceJiopi8+bNbNq0iZCQEC5cuMAzzzxDVFQUgwcPpr6+nt/9\n7ncAPPDAAwDcfPPNjB8/3j3flXsOEyZMIDw8nFOnTjFjxgz363fddRd//vOfWbRoEQMHDiQ+Pr5N\nw7Bgon4IItcof/dD8OrfaG6u7+cQzJjjGtTR+vvy2ak9BBERARQIIiLSSoEgIiKAH84hfPvtt6Sl\npXHhwgWam5v54Q9/6D45c5nD4eCHP/wht99+OwBz5szh2Wef9SxM5xBEfNIT5xCcTif5Rfn8vfzv\nnG46jevzz7AOu4PosGim3jOVrIeyCA0Nveq8ZsxxPfDHOQS/nFQ+d+4cNpuNixcvkpqayvLly0lN\nTXVvdzgc/P73v6e4uLjjwhQIIj4JZCA0NzezYvUKCvcUUhlViSvG5Xn8oQWstVYSTieQac9kyWNL\n6Nu3r8d8ZsxxPfFHIPjlSmWbzQZc+g/scrkYOHBgmzH6sBe5NjQ0NJC+IJ3SmFJcY13tD+oDrsEu\nDg0+ROXRSv6W9Tc2vbaJiIgI0+YQ3/klEFpaWhg3bhyfffYZCxcuJCEhwWO7xWJh3759JCYmEhsb\ny/Lly9uMAc/L4u12O/bW+5SISHBoaGhg2vxplI8oB5t3f8cV5WK3bTfTsqex/c3tAD7PcT2HgsPh\nwOFwmDKXX69D+Prrr7nvvvt44YUXPD7MGxoasFqt2Gw2tmzZwhNPPMHRo0c9C9MhIxGfBOKQUdoD\naewettvrD3IPTTDx/00EC+y9fW+350irSmPb+m3X3eGjXncdQv/+/bn//vvZv3+/x+sRERHuw0oz\nZszA6XRy5swZf5YiImazQWlMafc+yAHCoPSrUkqjfZwjupQVf1rRzQn8rze12zQ9EOrr6zl79iwA\n58+fZ/v27e6mEpfV1ta6E+zyPT7aO88gIsHJ6XTCreC6pYPj/d5wgXHBwIj2bTfGFeWi0FF4qaZW\nQ4cOJSYmhnPnzrlfe+2115g0aZJP79WZ3t5u0/RAOHXqFJMnTyYpKYmUlBTS09OZMmUKa9asYc2a\nNQBs3LiRMWPGkJSUxJNPPklRUZHZZYiIHxVsKIA0Hyf5FGh76rBbKqMrL9V0hZaWFlauXGnOG1wn\nTA+EMWPG8OGHH3Lw4EE+/vhj/v3f/x2AnJwccnJyAPi3f/s3/vnPf3Lw4EH27dvHPffcY3YZIuJH\nO8p2QKyPk9QCnbcb8IorxsWO8h3u5xaLhaeeeorly5fz9ddftxl/5MgRpk2bxs0338zIkSN5++23\n3dv+53/+h/T0dPr378+ECRN49tlnmThxonv7E088wW233Ub//v0ZP348paWlANdEu01dqSwiXXa6\n6bQ5nx5mfQL1gbrGOo+Xxo8fj91uZ/ny5R6vnzt3jmnTpvHwww9TV1dHUVERP//5z/nkk0+AS7+w\nRkREUFtby5tvvkl+fn6bO5t+9NFHfPXVV8ybN48HHniA5ubma6LdpgJBRLrMhQ/nDi67et+ZLrvI\nRc/pLRZ++9vf8sorr7h/A4dLv4UPGzaM7Oxs+vTpQ1JSEj/+8Y95++23cblc/PWvfyUvL49+/fox\natQosrOzPb6189Of/pTIyEj69OnDL3/5Sy5cuMCnn34KeNdu88pD5Ff2T7iy3abFYmH+/PnccMMN\nlJWVmbI+3lAgiEiXWbH6PonJX4kNaeeyqtGjRzNr1ixeeOEF92/5J06coLy8nMjISPfjrbfeora2\nlvr6ei5evEhcXJx7jiFDhnjMefm6qQEDBhAZGcnXX3/tEThXc2W7zaqqqjbtNlesWOFRV01NTUDb\nbaqnsoh0WXRYNLTg+6+UZszROk9UeFS7m/Ly8hg3bhxLliwBIC4ujrS0NLZt29ZmrMvlIiQkhOrq\nauLj4wGorq52b9+7dy8vvfQSO3fuZPTo0QAMHDjQvVfQlXab0dHR7bbb/PWvf93FH9482kMQkS6b\nes9UOOnjJDGASb/8WmutTE2Z2u62O+64g4ceeoiVK1disViYNWsWR48eZf369TidTpxOJ++//z5H\njhzBarXy4x//mNzcXM6fP8+RI0coKChwf9A3NDQQEhLCLbfcQnNzM7/97W/55ptv3O/V29ttKhBE\npMuyHsqC3T5O8j2g0oxqIOF0wqWaOvCb3/zGfU1CeHg427Zto6ioiNjYWAYPHswzzzzjPnm7atUq\nvv76awYNGkR2djaZmZnuq6CnT5/O9OnTGTFiBEOHDuXGG2/ktttuc79Pb2+3qRaaItcov9+6IsyC\n9RErrqjun2C27LHASHy6OM1aZ+X5Ec/zzOJnuj3H1Tz99NOcPn2adevW+WX+7up1t64QkWvYOUg9\nnQrnOh/ariZIjUz1fY66VJY8tqSbE7T16aef8vHHH2MYBhUVFbzxxhvuE7/XOgWCiHTbptc3kXIs\npesf6E2QcjyFzes2s/mNzT7Nsem1Tabe2K6hoYE5c+YQHh7O3Llzeeqpp8jIyDBt/mCmQ0Yi16hA\nNcjx6GXgxb2NrHVWUutSO+6H0M05rjc6ZCQiQSciIoJt67exNH4pYz4ag/WU9dLXSa/UAtZTVsZ+\nPJbnRzzPtoJtHh/kZswhvtMewvXC4QA1GDJHL1nLnuqpXLChgB3lO6hrrOMiFwkhhKjwKKameN9T\n2dc5rge9pqeyGRQIJsvNvfQQ3/WSteyJQJDA6TU9lUXk2hcZGdnplbniP5GRkabPqUAQkW7xtsth\nd/ouA+5vEV3vPZMDSSeVRcRvmpubSV+Q3vUwAAiD8uHlpC9ID+gtoK9nCgQR8ZsVq1f43nc5yHsm\nX0sUCCLiF06nk8I9hb71Xab9nsniHwoEEfGLgg0FVEaZc/e69nomi/lMD4Rvv/2WlJQUkpKSSEhI\n4Jln2r/h1OLFi4mPjycxMdHdak5Erh07ynbgijGhsxpteyaLf5j+LaN+/fqxa9cubDYbFy9eJDU1\nldLSUlJTU91jSkpKOH78OMeOHaO8vJyFCxcGtE2ciPjf6abT0H7Pmq5rp2eymM8vXzu12S6dQWpu\nbsblcjFw4ECP7cXFxWRnZwOQkpLC2bNnqa2tJSYmxmNc7hUX/9jtduy94OrQgHM4Lj06k5fn3Xx2\ne6+4CtcvtJamMqXv8hW+2zNZLnE4HDi8+f/WC34JhJaWFsaNG8dnn33GwoULSUhI8Nh+8uTJNj1L\na2pqrhoI0oGufOhoPa9Oa2kqU/ouX6G9nsnS9pflPG9/YWmHX04q9+nTh4MHD1JTU8OePXvaTa/v\nXlqtKx5Fri3uvstmuErPZDGPX79l1L9/f+6//37279/v8XpsbKxH4+qamhpiY2P9WYqIBNjUe6Zi\nrTVnL+FqPZPFPKYHQn19PWfPngXg/PnzbN++neTkZI8xGRkZ7l6hZWVlDBgwoM3hIhHp3bIeyiKh\nLqHzgV7orGeymMP0g3KnTp0iOzublpYWWlpayMrKYsqUKaxZswaAnJwcZs6cSUlJCcOHDycsLCzo\nepWKiO9CQ0PJTMuk8milT32XrXVWMu2ZuuV1AOj219eLXnLL5l6hl6ylv29/7Y3m5mZ+8PAP2D1s\nd/duX9EEaSfS2FawzdQ2mdcydUwTkaDUt29fn/sum90zWTqmQBARv4qIiGD7m9tJ+zwNa713J5mt\ndVbSTqTp1tcBpkAQEb9Tz+TeQecQrhe9pA9wr9BL1jIYziG0Rz2T/Us9lUWkjWANBPEvnVQWERGf\nKRBERARQIIiISCsFgoiIAAoEERFppUAQERFAgSAiIq0UCCIiAigQRESklQJBREQABYKIiLRSIIiI\nCKBAEBGRVqYHQnV1NZMmTWL06NHceeedvPzyy23GOBwO+vfvT3JyMsnJySxdutTsMkREpItCzJ4w\nNDSUP/zhDyQlJdHY2Mhdd93FtGnTGDVqlMe4tLQ0iouLzX57ERHpJtP3EAYNGkRSUhIA4eHhjBo1\nii+//LLNOPU6EBEJLqbvIVypqqqKAwcOkJKS4vG6xWJh3759JCYmEhsby/Lly0lISGjz93Nzc91/\nttvt2HtBlyqRYBEZealJjlzrHK0P3/mtY1pjYyN2u51nn32W2bNne2xraGjAarVis9nYsmULTzzx\nBEePHvUsTB3TRES6LOhaaDqdTmbNmsWMGTN48sknOx0/bNgwPvjgAwYOHPi/hSkQRES6LKhaaBqG\nwYIFC0hISOgwDGpra90FV1RUYBiGRxiIiEjgmX4O4b333mP9+vWMHTuW5ORkAJYtW8YXX3wBQE5O\nDhs3bmT16tWEhIRgs9koKioyuwwREekiv51D8JUOGYmIdF1QHTISEZHeSYEgIiKAAkFERFopEERE\nBFAgiIhIKwWCiIgACgQREWmlQBAREUCBICIirRQIIiICKBBERKSVAkFERAA/d0wTuRY4nU7yi/L5\ne/nfOd10GhcurFiJDotm6j1TyXooi9DQ0J4uU8RnutupSAeam5tZsXoFhXsKqYyqxBXj8tynbgFr\nrZWE0wlk2jNZ8tgS+vbt22P1ikAQdkwzgwJBelJDQwPpC9IpjSnFdYur0/HWOiupdalsem0TERER\nAahQpH0KBBETNTQ0MG3+NMpHlIOtC3+xCVKOp7D9ze0KBekxCgQRkzQ3N/ODh3/A7mG7uxYGlzVB\nWlUa29Zv0+Ej6RFqkCNikhWrV1AaU9q9MAAIg9LoUlb8aYWpdYkEggJBpJXT6aRwT6FX5wyuxhXl\notBRiNPpNKkykcC4aiB88803fPbZZ21e//jjjzv8O9XV1UyaNInRo0dz55138vLLL7c7bvHixcTH\nx5OYmMiBAwe6WLaI+Qo2FFAZVWnKXJXRlRRsKDBlLpFA6TAQ/vKXvzBy5EjmzJnD6NGjqaiocG/L\nzs7ucMLQ0FD+8Ic/cPjwYcrKynj11Vf55JNPPMaUlJRw/Phxjh07xtq1a1m4cKEJP4qIb3aU7bj0\n1VITuGJc7CjfYcpcIoHSYSD813/9Fx988AEHDx5k3bp1zJ8/n7/+9a+dTjho0CCSkpIACA8PZ9So\nUXz55ZceY4qLi92hkpKSwtmzZ6mtrfXl5xDx2emm0+YdRO0DdY11Jk0mEhgdXqnscrkYPHgwABMm\nTGDXrl3MmjWL6upqryevqqriwIEDpKSkeLx+8uRJ4uLi3M+HDBlCTU0NMTExHuNyc3Pdf7bb7djt\ndq/fW6SrXJizd3DZRS6aOp9IexwOBw6Hw5S5OgyEm266ic8++4w77rgDgMGDB7Nr1y5+9KMfcfjw\n4U4nbmxs5Cc/+QkrV64kPDy8zfbvfi3KYrG0GXNlIIj4mxWrqfOF6M4wEgDf/WU5Ly+v23N1uIP8\n3//937S0tFBZ+b8n2W666Sa2bt3K66+/ftVJnU4nc+bM4eGHH2b27NlttsfGxnrsadTU1BAbG9ud\n+kVMEx0WDS0mTdYCUeFRJk0mEhgdBkJSUhLx8fE8+OCDvPjiixiGwblz5/jlL3/Jq6++2uGEhmGw\nYMECEhISePLJJ9sdk5GRQX5+PgBlZWUMGDCgzeEikUCbes9UrLXm7CVYa61MTZlqylwigdLplcpN\nTU08/fTT7N+/n8bGRubNm8evfvUr+vRpP0tKS0u59957GTt2rPsw0LJly/jiiy8AyMnJAWDRokVs\n3bqVsLAw1q1bx7hx4zwL05XKEmBOp5O75t7FobGHfJ5rzEdj+GDDB7oLqgScL5+dnR7kDAkJ4cYb\nb+T8+fN8++233H777R2GAUBqaiotLZ3vd69ataprlYr4WWhoKJlpmVQercQV1f0TzNY6K5n2TIWB\n9DqdfsluwoQJ9OvXj/3797N3717eeustHnjggUDUJhJwSx5bQurpVDjXzQmaILUulSWPLTG1LpFA\n6PSQ0fvvv8/dd9/t8Vp+fj7z58/3b2E6ZCQ9pKGhgWnZ0yiP191OpffR3U5FTKZ+CNJb6W6nIiaL\niIhg2/ptLI1fypiPxmA9ZW37ldQWsJ6yMvbjsTw/4nm2FWxTGEivpj0EkU44nU4KNhSwo3wHdY11\nXOQiIYQQFR7F1BT1VJbgokNGIiIC6JCRiIiYQIEgIiKAAkFERFopEEREBFAgiIhIKwWCiIgACgQR\nEWmlQBAREUCBICIirRQIIiICKBBERKSVAkFERAAFgoiItPJLIPzsZz8jJiaGMWPGtLvd4XDQv39/\nkpOTSU5OZunSpf4oQ0REuiDEH5M+8sgjPP7441dts5mWlkZxcbE/3l5ERLrBL3sIEydOJDIy8qpj\n1OtARCS4+GUPoTMWi4V9+/aRmJhIbGwsy5cvJyEhoc243Nxc95/tdjt2uz1wRYqI9AIOhwOHw2HK\nXH7rmFZVVUV6ejqHDh1qs62hoQGr1YrNZmPLli088cQTHD161LMwdUwTEemyXtcxLSIiApvNBsCM\nGTNwOp2cOXOmJ0oREZFWPRIItbW17gSrqKjAMAwGDhzYE6WIiEgrv5xDyMzMZPfu3dTX1xMXF0de\nXh5OpxOAnJwcNm7cyOrVqwkJCcFms1FUVOSPMkREpAv8dg7BVzqHICLSdb3uHIKIiAQfBYKIiAAK\nBBERaaVAEBERQIEgIiKtFAgiIgIoEEREpJUCQUREAAWCiIi0UiCIiAigQBARkVYKBBERAXqoY5r0\nAIcD1HGuW5xOJ/lF+fy9/O+cbjqNCxdWrESHRTP1nqlkPZRFaGhoT5cp4jPd7fR6kZt76SFea25u\nZsXqFRTuKaQyqhJXjMtzn7oFrLVWEk4nkGnPZMljS+jbt2+P1SsCvn12ag9BpB0NDQ2kL0inNKYU\n11hX+4P6gGuwi0ODD1F5tJK/Zf2NTa9tIiIiIrDFiphE5xBEvqOhoYFp86exe9huXLd0EAbf4Ypy\nsfv/7GZa9jQaGhr8XKGIfygQRK7Q3NxM+oJ0ykeUg62LfzkMyoeXk74gnebmZr/UJ+JPCgSRK6xY\nvYLSmNKuh8FlYVAaXcqKP60wtS6RQFAgiLRyOp0U7in0+jBRR1xRLgodhe4+4iK9hemB8LOf/YyY\nmBjGjBnT4ZjFixcTHx9PYmIiBw4cMLsEkW4p2FBAZVSlKXNVRldSsKHAlLlEAsX0QHjkkUfYunVr\nh9tLSko4fvw4x44dY+3atSxcuNDsEkS6ZUfZjktfLTWBK8bFjvIdpswlEiimB8LEiROJjIzscHtx\ncTHZ2dkApKSkcPbsWWpra80uQ6TLTjedNu9fRB+oa6wzaTKRwAj4dQgnT54kLi7O/XzIkCHU1NQQ\nExPTZmzuFRdS2e127LrSti2H49KjM3l53s1nt1+3VzS7MGfv4LKLXDR1PpH2OBwOHN58BnihRy5M\n++5VdBaLpd1xubqytnNd+QDXel6VFaup84Xouk8JgO/+spzn7S9/7Qj4t4xiY2Oprq52P6+pqSE2\nNjbQZYi0ER0WDS0mTdYCUeFRJk0mEhgBD4SMjAzy8/MBKCsrY8CAAe0eLhIJtKn3TMVaa85egrXW\nytSUqabMJRIopu/TZmZmsnv3burr64mLiyMvL8/9feycnBxmzpxJSUkJw4cPJywsjHXr1pldgki3\nZD2UxR//7x85NPiQz3MlnE4g66EsE6oSCRzTA6GwsLDTMatWrTL7bUV8FhoaSmZaJpVHK3FFdf8E\ns7XOSqY9U7fEll5HVyqLXGHJY0tIPZ0K57o5QROk1qWy5LElptYlEggKBJEr9O3bl02vbyLlWErX\nQ6EJUo6nsOm1TeqLIL2SAkHkOyIiItj+5nbSPk/DWu/dSWZrnZW0E2lsf3O7+iFIr6VAEGlHREQE\n29ZvY2n8UsZ8NAbrKWvbr6S2gPWUlbEfj+X5Ec+zrWCbwkB6NbXQvF6op3K3OZ1OCjYUsKN8B3WN\ndVzkIiGEEBUexdQU9VSW4OLLZ6cCQUTkGuLLZ6cOGYmICKBAEBGRVgoEEREBFAgiItJKgSAiIoAC\nQUREWikQREQEUCCIiEgrBYKIiAAKBBERaaVAEBERQIEgIiKtFAgiIgL4KRC2bt3KyJEjiY+P58UX\nX2yz3eFw0L9/f5KTk0lOTmbp0qX+KENERLogxOwJXS4XixYtYseOHcTGxnL33XeTkZHBqFGjPMal\npaVRXFxs9tuLiEg3mb6HUFFRwfDhwxk6dCihoaHMnTuXd955p8049ToQEQkupu8hnDx5kri4OPfz\nIUOGUF5e7jHGYrGwb98+EhMTiY2NZfny5SQkJLSZKzc31/1nu92OXR2/REQ8OBwOHA6HKXOZHggW\ni6XTMePGjaO6uhqbzcaWLVuYPXs2R48ebTPuykAQEZG2vvvLcl5eXrfnMv2QUWxsLNXV1e7n1dXV\nDBkyxGNMREQENpsNgBkzZuB0Ojlz5ozZpYiISBeYHgjjx4/n2LFjVFVV0dzczIYNG8jIyPAYU1tb\n6z6HUFFRgWEYDBw40OxSRESkC0w/ZBQSEsKqVau47777cLlcLFiwgFGjRrFmzRoAcnJy2LhxI6tX\nryYkJASbzUZRUZHZZYiISBdZjCD9uo/FYtE3kUREusiXz05dqSwiIoACQUREWikQREQEUCCIiEgr\nBYKIiAAKBBERaaVAEBERQIEgIiKtFAgiIgIoEEREpJUCQUREAAWCiIi0UiCIiAigQBARkVYKBBER\nARQIIiLSSoEgIiKAAkFERFopEHzkcDh6ugSvqE7z9IYaQXWarbfU6Qu/BMLWrVsZOXIk8fHxvPji\ni+2OWbx4MfHx8SQmJnLgwAF/lBEQveV/EtVpnt5QI6hOs/WWOn1heiC4XC4WLVrE1q1bqayspLCw\nkE8++cRjTElJCcePH+fYsWOsXbuWhQsXml2GiIh0kemBUFFRwfDhwxk6dCihoaHMnTuXd955x2NM\ncXEx2dnZAKSkpHD27Flqa2vNLkVERLrCMNnbb79tPProo+7nBQUFxqJFizzGzJo1y3jvvffcz6dM\nmWLs37/fYwyghx566KFHNx7dFYLJLBaLV+MufeZ3/Pe+u11ERPzL9ENGsbGxVFdXu59XV1czZMiQ\nq46pqalnxrvpAAAFoUlEQVQhNjbW7FJERKQLTA+E8ePHc+zYMaqqqmhubmbDhg1kZGR4jMnIyCA/\nPx+AsrIyBgwYQExMjNmliIhIF5h+yCgkJIRVq1Zx33334XK5WLBgAaNGjWLNmjUA5OTkMHPmTEpK\nShg+fDhhYWGsW7fO7DJERKSrun32wSRbtmwxvve97xnDhw83XnjhhXbHPP7448bw4cONsWPHGh9+\n+GGAK7ykszp37dpl3HTTTUZSUpKRlJRkPP/88wGv8ZFHHjGio6ONO++8s8MxwbCWndUZDGtpGIbx\nxRdfGHa73UhISDBGjx5trFy5st1xPb2m3tTZ02t6/vx5Y8KECUZiYqIxatQo41e/+lW743p6Lb2p\ns6fX8koXL140kpKSjFmzZrW7vavr2aOBcPHiReOOO+4wPv/8c6O5udlITEw0KisrPcZs3rzZmDFj\nhmEYhlFWVmakpKQEZZ27du0y0tPTA17blfbs2WN8+OGHHX7QBsNaGkbndQbDWhqGYZw6dco4cOCA\nYRiG0dDQYIwYMSIo///0ps5gWNOmpibDMAzD6XQaKSkpxt69ez22B8NaGkbndQbDWl62YsUKY968\nee3W05317NFbV/SWaxa8qRN6/ptREydOJDIyssPtwbCW0Hmd0PNrCTBo0CCSkpIACA8PZ9SoUXz5\n5ZceY4JhTb2pE3p+TW02GwDNzc24XC4GDhzosT0Y1tKbOqHn1xIufRmnpKSERx99tN16urOePRoI\nJ0+eJC4uzv18yJAhnDx5stMxNTU1Aauxoxq+W6fFYmHfvn0kJiYyc+ZMKisrA1qjN4JhLb0RjGtZ\nVVXFgQMHSElJ8Xg92Na0ozqDYU1bWlpISkoiJiaGSZMmkZCQ4LE9WNayszqDYS0BfvGLX/DSSy/R\np0/7H+PdWc8eDQSzrlnwN2/eb9y4cVRXV/PRRx/x+OOPM3v27ABU1nU9vZbeCLa1bGxs5Cc/+Qkr\nV64kPDy8zfZgWdOr1RkMa9qnTx8OHjxITU0Ne/bsaffeQMGwlp3VGQxr+e677xIdHU1ycvJV91a6\nup49Ggi95ZoFb+qMiIhw72rOmDEDp9PJmTNnAlpnZ4JhLb0RTGvpdDqZM2cODz/8cLv/8INlTTur\nM5jWtH///tx///3s37/f4/VgWcvLOqozGNZy3759FBcXM2zYMDIzM9m5cyfz58/3GNOd9ezRQOgt\n1yx4U2dtba07jSsqKjAMo91jjz0pGNbSG8GyloZhsGDBAhISEnjyySfbHRMMa+pNnT29pvX19Zw9\nexaA8+fPs337dpKTkz3GBMNaelNnT68lwLJly6iurubzzz+nqKiIyZMnu9fusu6sp+nXIXRFb7lm\nwZs6N27cyOrVqwkJCcFms1FUVBTwOjMzM9m9ezf19fXExcWRl5eH0+l01xgMa+lNncGwlgDvvfce\n69evZ+zYse4PhWXLlvHFF1+4aw2GNfWmzp5e01OnTpGdnU1LSwstLS1kZWUxZcqUoPu37k2dPb2W\n7bl8KMjX9bQYwXC6XEREepw6pomICKBAEBGRVgoEEREBFAgiItJKgSDSDdOnTycyMpL09PSeLkXE\nNAoEkW74j//4DwoKCnq6DBFTKRBEruL9998nMTGRCxcu0NTUxJ133kllZSWTJ09u9zYWIr1Zj16Y\nJhLs7r77bjIyMnj22Wc5f/48WVlZbW52JnKtUCCIdOI3v/kN48eP58Ybb+SVV17p6XJE/EaHjEQ6\nUV9fT1NTE42NjZw/f979ejDeKVbEFwoEkU7k5OSwdOlS5s2bx9NPP+1+XXd9kWuNDhmJXEV+fj43\n3HADc+fOpaWlhe9///vs2rWL5557jiNHjtDY2EhcXBxvvPEG06ZN6+lyRXyim9uJiAigQ0YiItJK\ngSAiIoACQUREWikQREQEUCCIiEgrBYKIiADw/wFkj1wnttJ/6wAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 8: x2>=2.5 and x1>=1.5\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([4,1.5,1.5,1.5],[1.5,1.5,1.5,4]);\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"legend(('Postive','Negative'))\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UlHXe//HnOGA2QIgFaEhfLXEVU8BMOntjjL/u1IR1\n163EO+S0tofc26xdu++2vTsbbK5bJ91dy25Xt/IEnsDNs98TJrrq6qjkAllarmRq3zQwD8JtFqDJ\nOFzfP8S5nQAZmGtggNfjnDnHmevDhzefYl5c1zXX9bYYhmEgIiJ9Xr/uLkBERAKDAkFERAAFgoiI\nNFMgiIgIoEAQEZFmCgQREQH8GAgul4ukpCTS0tJa3b5kyRLi4uJISEjg4MGD/ipDRES85LdAWLVq\nFfHx8VgslhbbiouLOXHiBMePH2fdunUsWrTIX2WIiIiX/BIIVVVVFBcX8+ijj9LadW9FRUVkZWUB\nkJyczPnz56murvZHKSIi4qUgf0z685//nJdeeolvvvmm1e2nT58mNjbW/Xzo0KFUVVURHR3tfq21\nPQsREWlfZ29AYfoewrvvvktUVBRJSUnXLeq721oLAMMwAv7x3HPPdXsNvalOCPw6e8paqs6+Wacv\nTA+E/fv3U1RUxPDhw8nIyGDXrl0sWLDAY0xMTAyVlZXu51VVVcTExJhdioiIdIDpgbB8+XIqKyv5\n/PPPKSwsZMqUKeTl5XmMSU9Pd79WWlrKwIEDPQ4XiYhI1/PLOYRrXT0UtHbtWgCys7OZNWsWxcXF\njBgxgpCQENavX+/vMvzGbrd3dwle6Sl1gr27C2hXT1lL1WmunlKnLyyGrwed/MRisfh8PEx6HosF\n9J9dpPN8ee/0+x6CiPROgwYN4quvvrrumFRgj4/fx4w5eqOIiAjOnTtn6py6dYWIdMpXX33V7ide\nHCZ8MseMOXrjo70w7gwFgoiIAAoEERFppkAQERFAgSAi0mGzZs0iPz+/u8swnQJBRHqdYcOGYbPZ\nCAsLY/DgwTzyyCM0NDR0aq6cnBwyMzM9XisuLm7xWm+gQBCRXsdisfDuu+9SV1fHhx9+yIEDB1i2\nbFl3lxXwFAgi0qvdeuutzJgxg3/+858UFRUxZswYIiIimDx5MkePHnWPe/HFFxk6dCg33XQTo0aN\nYteuXWzbto3f/e53bNy4kbCwMJKSkoArVy2//vrrXLp0iYEDB3LkyBH3PDU1NdhsNmpra4ErN/xM\nTEwkIiKCf/mXf+Hw4cNduwAdoEAQkV7p6tW6lZWVbN26lbCwMObPn8/LL79MbW0ts2bNIi0tDafT\nyaeffsqrr77KgQMH+Oabb9i+fTvDhg1jxowZ/OpXv2LevHnU1dW5uztaLBYsFgs33HADc+fOpaCg\nwP19//KXv2C327nllls4ePAgCxcu5M9//jPnzp0jOzub9PR0Ghsbu2VN2qMrlUWk4xwOngPIybn+\nuNzctredPHnlATBs2JVHR+e4lt1+5cGVMJgzZw5BQUGEh4cze/ZsBg8eTFNTE1OnTgXgqaeeYtWq\nVfzjH//g1ltv5dKlSxw5coSbb76Z2267zT1te7eVnj9/PtnZ2e5DUm+99Za7C+S6devIzs7m7rvv\nBmDBggUsX76c0tJS7r33Xu9+ri6kQBCRjrPbyeXKCdd2eTPG5DksFgvvvPMOU6ZMcb/2s5/9zOON\n3mKxEBsby+nTp7n33nv54x//SE5ODkeOHOG+++7j97//PUOGDGn3e9ntdi5cuEB5eTlRUVF89NFH\n/PCHPwTg1KlT5OXl8corr7jHO51Ozpw506Gfp6vokJGI9Am33norp06dcj83DIPKykp3L5aMjAz2\n7dvHqVOnsFgsPP3000D73RutVisPPvggBQUFFBQUkJaWRkhICAC33XYb//Vf/8VXX33lftTX1/PQ\nQw/56af0jQJBRPqEBx98kC1btrBr1y6cTicrV65kwIABfP/73+fYsWPs2rWLS5cuccMNNzBgwACs\nVisAgwcP5uTJky0OG137fP78+RQWFvLWW28xf/589+s//elP+dOf/kR5eTmGYdDQ0MCWLVuor6/v\nmh+6gxQIItInjBw5kg0bNvD4448TGRnJli1b2Lx5M0FBQVy6dIlnnnmGyMhIhgwZQm1tLb/73e8A\neOCBBwC4+eabmTBhgnu+a/ccJk6cSGhoKGfOnGHmzJnu1++66y7+/Oc/s3jxYgYNGkRcXFyLhmGB\nRP0QJKCoH0LP4dXvaE6O7+cQzJijF2pr/X1579QegoiIAAoEERFppkAQERHAD+cQvv32W1JTU7l0\n6RKNjY384Ac/cJ+cucrhcPCDH/yA22+/HYC5c+fy7LPPehamcwh9ks4h9Byt/Y46nU7yCvP4e9nf\nOdtwFtfnn2EdfgdRIVFMu2camQ9lEhwcfN15zZijL/DHOQS/nFS+cOECNpuNy5cvk5KSwooVK0hJ\nSXFvdzgc/P73v6eoqKjtwhQIfZICoee49ne0sbGRlWtWUrC3gIrIClzRLs/jD01grbYSfzaeDHsG\nSx9bSv/+/T3mM2OOvsQfgeCXK5VtNhtw5T+wy+Vi0KBBLcbozV6kd6irqyNtYRol0SW4xrlaH9QP\nXENcHB5ymIpjFfwt829sfm0zYWFhps0hvvNLIDQ1NTF+/Hg+++wzFi1aRHx8vMd2i8XC/v37SUhI\nICYmhhUrVrQYA56XxdvtduzN9ykRkcBQV1fH9AXTKRtZBjbvvsYV6WKPbQ/Ts6az480dAD7P0ZdD\nweFw4HA4TJnLr9chfP3119x333288MILHm/mdXV1WK1WbDYbW7du5YknnuDYsWOehemQUZ+kQ0Y9\nh8ViIfWBVPYM3+P1G7mHBpj0/yaBBfbdvq/Tc6SeTGX7hu197vBRj7sOITw8nPvvv58DBw54vB4W\nFuY+rDRz5kycTifnzp3zZykiYjYblESXdO6NHCAESr4qoSTKxzmiSlj5p5WdnMD/elK7TdMDoba2\nlvPnzwNw8eJFduzY4W4qcVV1dbU7wa7e46O18wwiEpicTifcCq5b2jje7w0XGJcMjCjfdgldkS4K\nHAVXamo2bNgwoqOjuXDhgvu11157jcmTJ/v0vdrT09ttmh4IZ86cYcqUKSQmJpKcnExaWhpTp05l\n7dq1rF27FoBNmzYxduxYEhMTefLJJyksLDS7DBHxo/yN+ZDq4ySfAi1PHXZKRVTFlZqu0dTUxKpV\nq8z5Bn2E6YEwduxYPvzwQw4dOsTHH3/Mf/zHfwCQnZ1NdnY2AP/+7//OP//5Tw4dOsT+/fu55557\nzC5DRPxoZ+lOiPFxkmqg/XYDXnFFu9hZttP93GKx8NRTT7FixQq+/vrrFuOPHj3K9OnTufnmmxk1\nahRvv/22e9v//M//kJaWRnh4OBMnTuTZZ59l0qRJ7u1PPPEEt912G+Hh4UyYMIGSkhKAXtFuU1cq\ni0iHnW04a867h1nvQP2gpr7G46UJEyZgt9tZsWKFx+sXLlxg+vTpPPzww9TU1FBYWMjPfvYzPvnk\nE+DKH6xhYWFUV1fz5ptvkpeX1+LOph999BFfffUV8+fP54EHHqCxsbFXtNtUIIhIh7nw4dzBVdfv\nO9Nhl7nsOb3Fwm9+8xteeeUV91/gcOWv8OHDh5OVlUW/fv1ITEzkRz/6EW+//TYul4u//vWv5Obm\nMmDAAEaPHk1WVpbHp3b+7d/+jYiICPr168cvfvELLl26xKeffgp4127z2kPk1/ZPuLbdpsViYcGC\nBdxwww2Ulpaasj7eUCCISIdZsfo+ickfLw5q5bKqMWPGMHv2bF544QX3X/mnTp2irKyMiIgI9+Ot\nt96iurqa2tpaLl++TGxsrHuOoUOHesx59bqpgQMHEhERwddff+0RONdzbbvNkydPtmi3uXLlSo+6\nqqqqurTdpnoqi0iHRYVEQRO+/0lpxhzN80SGRra6KTc3l/Hjx7N06VIAYmNjSU1NZfv27S3Gulwu\ngoKCqKysJC4uDoDKykr39n379vHSSy+xa9cuxowZA8CgQYPcewUdabcZFRXVarvNX/3qVx384c2j\nPQQR6bBp90yD0z5OEg2Y9MevtdrKtORprW674447eOihh1i1ahUWi4XZs2dz7NgxNmzYgNPpxOl0\n8v7773P06FGsVis/+tGPyMnJ4eLFixw9epT8/Hz3G31dXR1BQUHccsstNDY28pvf/IZvvvnG/b16\nertNBYKIdFjmQ5mwx8dJvgdUmFENxJ+Nv1JTG37961+7r0kIDQ1l+/btFBYWEhMTw5AhQ3jmmWfc\nJ29Xr17N119/zeDBg8nKyiIjI8N9FfSMGTOYMWMGI0eOZNiwYdx4443cdttt7u/T09ttqoWmBBTd\nuqLnsIRYsD5ixRXZ+RPMlr0WGIVPF6dZa6w8P/J5nlnyTKfnuJ6nn36as2fPsn79er/M31k97tYV\nItKLXYCUsylwof2hrWqAlIgU3+eoSWHpY0s7OUFLn376KR9//DGGYVBeXs4bb7zhPvHb2ykQRKTT\nNr++meTjyR1/Q2+A5BPJbFm/hS1vbPFpjs2vbTb1xnZ1dXXMnTuX0NBQ5s2bx1NPPUV6erpp8wcy\nHTKSgKJDRj3H1d9Rj14GXtzbyFpjJaUmpe1+CJ2co6/RISMRCThhYWFs37CdZXHLGPvRWKxnrFc+\nTnqtJrCesTLu43E8P/J5tudv93gjN2MO8Z32EPoKhwN6QIOhHrGH0EPW0t/a6qmcvzGfnWU7qamv\n4TKXCSKIyNBIpiV731PZ1zn6gh7TU9kMCgST5eRceQS4HhEIPWQt/U2/o92rx/RUFpHeLyIiot0r\nc8V/IiIiTJ9TgSAineJtl8PO9F0G3J8i6us9k7uSTiqLiN80NjaStjCt42EAEAJlI8pIW5jWpbeA\n7ssUCCLiNyvXrPS973KA90zuTRQIIuIXTqeTgr0FvvVdpvWeyeIfCgQR8Yv8jflURJpz97rWeiaL\n+UwPhG+//Zbk5GQSExOJj4/nmWdav+HUkiVLiIuLIyEhwd1qTkR6j52lO3FFm9BZjZY9k8U/TP+U\n0YABA9i9ezc2m43Lly+TkpJCSUkJKSkp7jHFxcWcOHGC48ePU1ZWxqJFi7q0TZyI+N/ZhrPQes+a\njmulZ7KYzy8fO7XZrpxBamxsxOVyMWjQII/tRUVFZGVlAZCcnMz58+eprq4mOjraY1zONRf/2O12\n7Lo6tCWH48qjPbm53s1nt/fdq3C1lqYype/yNb7bM1mucDgcOLz5/9YLfgmEpqYmxo8fz2effcai\nRYuIj4/32H769OkWPUurqqquGwjSho686Wg9r09raSpT+i5fo7WeydLyj+Vcb/9gaYVfTir369eP\nQ4cOUVVVxd69e1tNr+9eWq0rHkV6F3ffZTNcp2eymMevnzIKDw/n/vvv58CBAx6vx8TEeDSurqqq\nIiYmxp+liEgXm3bPNKzV5uwlXK9nspjH9ECora3l/PnzAFy8eJEdO3aQlJTkMSY9Pd3dK7S0tJSB\nAwe2OFwkIj1b5kOZxNfEtz/QC+31TBZzmH5Q7syZM2RlZdHU1ERTUxOZmZlMnTqVtWvXApCdnc2s\nWbMoLi5mxIgRhISEBFyvUhHxXXBwMBmpGVQcq/Cp77K1xkqGPUO3vO4Cuv11X9FDbtms21/3Lo2N\njfzrw//KnuF7Onf7igZIPZXK9vztprbJ7M3UMU1EAlL//v197rtsds9kaZsCQUT8KiwsjB1v7iD1\n81Sstd6dZLbWWEk9lapbX3cxBYKI+J16JvcMOofQV/SQPsA94hxCD1nLQKWeyf6lnsrSa/SIQBAJ\nYDqpLCIiPlMgiIgIoEAQEZFmCgQREQEUCCIi0kyBICIigAJBRESaKRBERARQIIiISDMFgoiIAAoE\nERFppkAQERFAgSAiIs1MD4TKykomT57MmDFjuPPOO3n55ZdbjHE4HISHh5OUlERSUhLLli0zuwwR\nEemgILMnDA4O5g9/+AOJiYnU19dz1113MX36dEaPHu0xLjU1laKiIrO/vYiIdJLpewiDBw8mMTER\ngNDQUEaPHs2XX37ZYpx6HYiIBBbT9xCudfLkSQ4ePEhycrLH6xaLhf3795OQkEBMTAwrVqwgPj6+\nxdfn5OS4/22327GrS5WIiAeHw4HD4TBlLr91TKuvr8dut/Pss88yZ84cj211dXVYrVZsNhtbt27l\niSee4NixY56FqWNan6SOaSK+CbgWmk6nk9mzZzNz5kyefPLJdscPHz6cDz74gEGDBv1vYQqEPkmB\nIOKbgGqhaRgGCxcuJD4+vs0wqK6udhdcXl6OYRgeYSAiIl3P9HMI7733Hhs2bGDcuHEkJSUBsHz5\ncr744gsAsrOz2bRpE2vWrCEoKAibzUZhYaHZZYiISAf57RyCr3TIqG/SISMR3wTUISMREemZFAgi\nIgIoEEREpJkCQUREAAWCiIg0UyCIiAigQBARkWYKBBERARQIIiLSTIEgIiKAAkFERJopEEREBPBz\nxzSR3sDpdJJXmMffy/7O2YazuHBhxUpUSBTT7plG5kOZBAcHd3eZIj7T3U4loATS3U4bGxtZuWYl\nBXsLqIiswBXt8tynbgJrtZX4s/Fk2DNY+thS+vfv3231ikAAdkwzgwKhbwqUQKirqyNtYRol0SW4\nbnG1O95aYyWlJoXNr20mLCysCyoUaZ0CQXqNQAiEuro6pi+YTtnIMrB14AsbIPlEMjve3KFQkG6j\nfggiJmlsbCRtYVrHwwAgBMpGlJG2MI3Gxka/1CfiTwoEkWusXLOSkuiSjofBVSFQElXCyj+tNLUu\nka6gQBBp5nQ6Kdhb4NU5g+txRboocBTgdDpNqkyka1w3EL755hs+++yzFq9//PHHbX5NZWUlkydP\nZsyYMdx55528/PLLrY5bsmQJcXFxJCQkcPDgwQ6WLWK+/I35VERWmDJXRVQF+RvzTZlLpKu0GQh/\n+ctfGDVqFHPnzmXMmDGUl5e7t2VlZbU5YXBwMH/4wx84cuQIpaWlvPrqq3zyySceY4qLizlx4gTH\njx9n3bp1LFq0yIQfRcQ3O0t3XvloqQlc0S52lu00ZS6RrtJmIPz2t7/lgw8+4NChQ6xfv54FCxbw\n17/+td0JBw8eTGJiIgChoaGMHj2aL7/80mNMUVGRO1SSk5M5f/481dXVvvwcIj4723DWvIOo/aCm\nvsakyUS6RptXKrtcLoYMGQLAxIkT2b17N7Nnz6aystLryU+ePMnBgwdJTk72eP306dPExsa6nw8d\nOpSqqiqio6M9xuXk5Lj/bbfbsdvtXn9vkY5yYc7ewVWXuWzqfCKtcTgcOBwOU+ZqMxBuuukmPvvs\nM+644w4AhgwZwu7du/nhD3/IkSNH2p24vr6eH//4x6xatYrQ0NAW27/7OVmLxdJizLWBIOJvVqym\nzhekO8NIF/juH8u5ubmdnqvNHeT//u//pqmpiYqK/z3JdtNNN7Ft2zZef/31607qdDqZO3cuDz/8\nMHPmzGmxPSYmxmNPo6qqipiYmM7UL2KaqJAoaDJpsiaIDI00aTKRrtFmICQmJhIXF8eDDz7Iiy++\niGEYXLhwgV/84he8+uqrbU5oGAYLFy4kPj6eJ598stUx6enp5OXlAVBaWsrAgQNbHC4S6WrT7pmG\ntdqcvQRrtZVpydNMmUukq7R764qGhgaefvppDhw4QH19PfPnz+eXv/wl/fq1niUlJSXce++9jBs3\nzn0YaPny5XzxxRcAZGdnA7B48WK2bdtGSEgI69evZ/z48Z6F6dYVfVJ33rrC6XRy17y7ODzusM9z\njf1oLB9s/EB3QZUu58t7Z7sHOYOCgrjxxhu5ePEi3377LbfffnubYQCQkpJCU1P7+92rV6/uWKUi\nfhYcHExGagYVxypwRXb+BLO1xkqGPUNhID1Oux+ymzhxIgMGDODAgQPs27ePt956iwceeKArahPp\ncksfW0rK2RS40MkJGiClJoWljy01tS6RrtDuIaP333+fu+++2+O1vLw8FixY4N/CdMioTwqYu51m\nTacsTnc7lZ5Ht7+WXiMQAgHUD0F6Lt3+WsRkYWFhbN+wnWVxyxj70VisZ6wtP5LaBNYzVsZ9PI7n\nRz7P9vztCgPp0bSHIAElUPYQruV0OsnfmM/Osp3U1NdwmcsEEURkaCTTktVTWQKLDhlJrxGIgSDS\nk+iQkYiI+EyBICIigAJBRESaKRBERARQIIiISDMFgoiIAAoEERFppkAQERFAgSAiIs0UCCIiAigQ\nRESkmQJBREQABYKIiDTzSyD85Cc/ITo6mrFjx7a63eFwEB4eTlJSEklJSSxbtswfZYiISAcE+WPS\nRx55hMcff/y6bTZTU1MpKiryx7cXEZFO8MsewqRJk4iIiLjuGPU6EBEJLH7ZQ2iPxWJh//79JCQk\nEBMTw4oVK4iPj28xLicnx/1vu92O3W7vuiKlW0REXGmSIyLecjQ/fOe3jmknT54kLS2Nw4cPt9hW\nV1eH1WrFZrOxdetWnnjiCY4dO+ZZmDqmiYh0WI/rmBYWFobNZgNg5syZOJ1Ozp071x2liIhIs24J\nhOrqaneClZeXYxgGgwYN6o5SRESkmV/OIWRkZLBnzx5qa2uJjY0lNzcXp9MJQHZ2Nps2bWLNmjUE\nBQVhs9koLCz0RxkiItIBfjuH4CudQxAR6bgedw5BREQCjwJBREQABYKIiDRTIIiICKBAEBGRZgoE\nEREBFAgiItJMgSAiIoACQUREmikQREQEUCCIiEgzBYKIiADd1DFNuoHDAeo41ylOp5O8wjz+XvZ3\nzjacxYULK1aiQqKYds80Mh/KJDg4uLvLFPGZ7nbaV+TkXHmI1xobG1m5ZiUFewuoiKzAFe3y3Kdu\nAmu1lfiz8WTYM1j62FL69+/fbfWKgG/vndpDEGlFXV0daQvTKIkuwTXO1fqgfuAa4uLwkMNUHKvg\nb5l/Y/NrmwkLC+vaYkVMonMIIt9RV1fH9AXT2TN8D65b2giD73BFutjzf/YwPWs6dXV1fq5QxD8U\nCCLXaGxsJG1hGmUjy8DWwS8OgbIRZaQtTKOxsdEv9Yn4kwJB5Bor16ykJLqk42FwVQiURJWw8k8r\nTa1LpCsoEESaOZ1OCvYWeH2YqC2uSBcFjgJ3H3GRnsL0QPjJT35CdHQ0Y8eObXPMkiVLiIuLIyEh\ngYMHD5pdgkin5G/MpyKywpS5KqIqyN+Yb8pcIl3F9EB45JFH2LZtW5vbi4uLOXHiBMePH2fdunUs\nWrTI7BJEOmVn6c4rHy01gSvaxc6ynabMJdJVTA+ESZMmERER0eb2oqIisrKyAEhOTub8+fNUV1eb\nXYZIh51tOGveb0Q/qKmvMWkyka7R5dchnD59mtjYWPfzoUOHUlVVRXR0dIuxOddcSGW327HrStuW\nHI4rj/bk5no3n93eZ69odmHO3sFVl7ls6nwirXE4HDi8eQ/wQrdcmPbdq+gsFkur43J0ZW37OvIG\nrvW8LitWU+cL0nWf0gW++8dyrrd//LWiyz9lFBMTQ2Vlpft5VVUVMTExXV2GSAtRIVHQZNJkTRAZ\nGmnSZCJdo8sDIT09nby8PABKS0sZOHBgq4eLRLratHumYa02Zy/BWm1lWvI0U+YS6Sqm79NmZGSw\nZ88eamtriY2NJTc31/157OzsbGbNmkVxcTEjRowgJCSE9evXm12CSKdkPpTJH//vHzk85LDPc8Wf\njSfzoUwTqhLpOqYHQkFBQbtjVq9ebfa3FfFZcHAwGakZVByrwBXZ+RPM1horGfYM3RJbehxdqSxy\njaWPLSXlbApc6OQEDZBSk8LSx5aaWpdIV1AgiFyjf//+bH59M8nHkzseCg2QfCKZza9tVl8E6ZEU\nCCLfERYWxo43d5D6eSrWWu9OMltrrKSeSmXHmzvUD0F6LAWCSCvCwsLYvmE7y+KWMfajsVjPWFt+\nJLUJrGesjPt4HM+PfJ7t+dsVBtKjqYVmX6Geyp3mdDrJ35jPzrKd1NTXcJnLBBFEZGgk05LVU1kC\niy/vnQoEEZFexJf3Th0yEhERQIEgIiLNFAgiIgIoEEREpJkCQUREAAWCiIg0UyCIiAigQBARkWYK\nBBERARQIIiLSTIEgIiKAAkFERJopEEREBPBTIGzbto1Ro0YRFxfHiy++2GK7w+EgPDycpKQkkpKS\nWLZsmT/KEBGRDggye0KXy8XixYvZuXMnMTEx3H333aSnpzN69GiPcampqRQVFZn97UVEpJNM30Mo\nLy9nxIgRDBs2jODgYObNm8c777zTYpx6HYiIBBbT9xBOnz5NbGys+/nQoUMpKyvzGGOxWNi/fz8J\nCQnExMSwYsUK4uPjW8yVk5Pj/rfdbseujl8iIh4cDgcOh8OUuUwPBIvF0u6Y8ePHU1lZic1mY+vW\nrcyZM4djx461GHdtIIiISEvf/WM5Nze303OZfsgoJiaGyspK9/PKykqGDh3qMSYsLAybzQbAzJkz\ncTqdnDt3zuxSRESkA0wPhAkTJnD8+HFOnjxJY2MjGzduJD093WNMdXW1+xxCeXk5hmEwaNAgs0sR\nEZEOMP2QUVBQEKtXr+a+++7D5XKxcOFCRo8ezdq1awHIzs5m06ZNrFmzhqCgIGw2G4WFhWaXISIi\nHWQxAvTjPhaLRZ9EEhHpIF/eO3WlsoiIAAoEERFppkAQERFAgSAiIs0UCCIiAigQRESkmQJBREQA\nBYKIiDRTIIiICKBAEBGRZgoEEREBFAgiItJMgSAiIoACQUREmikQREQEUCCIiEgzBYKIiAAKBBER\naaZA8JHD4ejuEryiOs3TE2oE1Wm2nlKnL/wSCNu2bWPUqFHExcXx4osvtjpmyZIlxMXFkZCQwMGD\nB/1RRpfoKf+TqE7z9IQaQXWarafU6QvTA8HlcrF48WK2bdtGRUUFBQUFfPLJJx5jiouLOXHiBMeP\nH2fdunUsWrTI7DJERKSDTA+E8vJyRowYwbBhwwgODmbevHm88847HmOKiorIysoCIDk5mfPnz1Nd\nXW12KSIi0hGGyd5++23j0UcfdT/Pz883Fi9e7DFm9uzZxnvvved+PnXqVOPAgQMeYwA99NBDDz06\n8eisIExwp27hAAAFy0lEQVRmsVi8GnflPb/tr/vudhER8S/TDxnFxMRQWVnpfl5ZWcnQoUOvO6aq\nqoqYmBizSxERkQ4wPRAmTJjA8ePHOXnyJI2NjWzcuJH09HSPMenp6eTl5QFQWlrKwIEDiY6ONrsU\nERHpANMPGQUFBbF69Wruu+8+XC4XCxcuZPTo0axduxaA7OxsZs2aRXFxMSNGjCAkJIT169ebXYaI\niHRUp88+mGTr1q3G9773PWPEiBHGCy+80OqYxx9/3BgxYoQxbtw448MPP+ziCq9or87du3cbN910\nk5GYmGgkJiYazz//fJfX+MgjjxhRUVHGnXfe2eaYQFjL9uoMhLU0DMP44osvDLvdbsTHxxtjxowx\nVq1a1eq47l5Tb+rs7jW9ePGiMXHiRCMhIcEYPXq08ctf/rLVcd29lt7U2d1rea3Lly8biYmJxuzZ\ns1vd3tH17NZAuHz5snHHHXcYn3/+udHY2GgkJCQYFRUVHmO2bNlizJw50zAMwygtLTWSk5MDss7d\nu3cbaWlpXV7btfbu3Wt8+OGHbb7RBsJaGkb7dQbCWhqGYZw5c8Y4ePCgYRiGUVdXZ4wcOTIg///0\nps5AWNOGhgbDMAzD6XQaycnJxr59+zy2B8JaGkb7dQbCWl61cuVKY/78+a3W05n17NZbV/SUaxa8\nqRO6/5NRkyZNIiIios3tgbCW0H6d0P1rCTB48GASExMBCA0NZfTo0Xz55ZceYwJhTb2pE7p/TW02\nGwCNjY24XC4GDRrksT0Q1tKbOqH71xKufBinuLiYRx99tNV6OrOe3RoIp0+fJjY21v186NChnD59\nut0xVVVVXVZjWzV8t06LxcL+/ftJSEhg1qxZVFRUdGmN3giEtfRGIK7lyZMnOXjwIMnJyR6vB9qa\ntlVnIKxpU1MTiYmJREdHM3nyZOLj4z22B8patldnIKwlwM9//nNeeukl+vVr/W28M+vZrYFg1jUL\n/ubN9xs/fjyVlZV89NFHPP7448yZM6cLKuu47l5LbwTaWtbX1/PjH/+YVatWERoa2mJ7oKzp9eoM\nhDXt168fhw4doqqqir1797Z6b6BAWMv26gyEtXz33XeJiooiKSnpunsrHV3Pbg2EnnLNgjd1hoWF\nuXc1Z86cidPp5Ny5c11aZ3sCYS29EUhr6XQ6mTt3Lg8//HCrv/iBsqbt1RlIaxoeHs7999/PgQMH\nPF4PlLW8qq06A2Et9+/fT1FREcOHDycjI4Ndu3axYMECjzGdWc9uDYSecs2CN3VWV1e707i8vBzD\nMFo99tidAmEtvREoa2kYBgsXLiQ+Pp4nn3yy1TGBsKbe1Nnda1pbW8v58+cBuHjxIjt27CApKclj\nTCCspTd1dvdaAixfvpzKyko+//xzCgsLmTJlinvtrurMepp+HUJH9JRrFrypc9OmTaxZs4agoCBs\nNhuFhYVdXmdGRgZ79uyhtraW2NhYcnNzcTqd7hoDYS29qTMQ1hLgvffeY8OGDYwbN879prB8+XK+\n+OILd62BsKbe1Nnda3rmzBmysrJoamqiqamJzMxMpk6dGnC/697U2d1r2Zqrh4J8XU+LEQiny0VE\npNupY5qIiAAKBBERaaZAEBERQIEgIiLNFAginTBjxgwiIiJIS0vr7lJETKNAEOmE//zP/yQ/P7+7\nyxAxlQJB5Dref/99EhISuHTpEg0NDdx5551UVFQwZcqUVm9jIdKTdeuFaSKB7u677yY9PZ1nn32W\nixcvkpmZ2eJmZyK9hQJBpB2//vWvmTBhAjfeeCOvvPJKd5cj4jc6ZCTSjtraWhoaGqivr+fixYvu\n1wPxTrEivlAgiLQjOzubZcuWMX/+fJ5++mn367rri/Q2OmQkch15eXnccMMNzJs3j6amJr7//e+z\ne/dunnvuOY4ePUp9fT2xsbG88cYbTJ8+vbvLFfGJbm4nIiKADhmJiEgzBYKIiAAKBBERaaZAEBER\nQIEgIiLNFAgiIgLA/wc2K2mFmzI9nQAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 11
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"According to AdaBoost Algorithm, at each iteration we pick up a base classifier which gives the minimum misclassification error. Thus, the next step is to find the same amongst these 8 classifiers. Each point is also given the same weight for the first iteration. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"D=1.0/len(train)*ones(len(train))"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 12
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"From observation we can see that the first classifier will give the least misclassification error. We next find the error in classifier #1."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 1 predicts 'Negative' if x1>=1.5 and 'Positive' otherwise\n",
"classifier_1_pred=array(train[:,0]<1.5)\n",
"misclassify_1_count=sum(classifier_1_pred!=bool_y)\n",
"classifier_1_out=-1*np.ones(len(y))\n",
"for i in range(0,len(y)):\n",
" if classifier_1_pred[i]==True:\n",
" classifier_1_out[i]=1\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 13
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print misclassify_1_count"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see that in this classifier only 1 sample was misclassified. By manual observation, from the plots we made earlier showing different classifiers, classifier #1 should be chosen for the first iteration. Since all the weights at this stage were equal, we didn't need to take them into consideration. Next we see which point was misclassified. Thus, we have $$\\epsilon_t=0.1667$$ .It is a positive point which was misclassified (2,3). Thus, its weight would be increased for the next iteration. We now calculate $$\\alpha_t = 0.5*log(1-\\epsilon_t/\\epsilon_t)$$"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"alpha_1=0.5*math.log((1-.1667)/.1667)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"alpha_1"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 16,
"text": [
"0.8045989658157064"
]
}
],
"prompt_number": 16
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we need to update the weights as per: $$D_{t+1}(i)=D_t(i)*exp(-\\alpha_t*y_i*h_t(x_i))/Z_t$$\n",
"Initially we calculate the weights and leave normalization for next step."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for i in range(0,len(D)):\n",
" print D[i],y[i],classifier_1_out[i]\n",
" D[i]=D[i]*math.exp(-1*alpha_1*y[i]*classifier_1_out[i])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0.166666666667 1 1.0\n",
"0.166666666667 1 1.0\n",
"0.166666666667 -1 -1.0\n",
"0.166666666667 -1 -1.0\n",
"0.166666666667 1 -1.0\n",
"0.166666666667 -1 -1.0\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"D\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 18,
"text": [
"array([ 0.07454454, 0.07454454, 0.07454454, 0.07454454, 0.37263328,\n",
" 0.07454454])"
]
}
],
"prompt_number": 18
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Thus, we see that at this stage, the 5th point, which was misclassified, has an incremented weight. Next, we normalize the weights.\n",
"$$Z_t=sum(D)$$\n",
"\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"z_t=sum(D)\n",
"D=(1.0/z_t)*D\n",
"print \"Updated weights after first iteration\",D"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Updated weights after first iteration [ 0.100012 0.100012 0.100012 0.100012 0.49994 0.100012]\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we reflect this set of weight changes in the original plot. \n",
"NB: For weight=1/6, Marker size =20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for i in range(0,len(y)):\n",
" if y[i]==1:\n",
" #Point belonging to positive class\n",
" plt.plot(train[:,0][i],train[:,1][i],'r+',ms=20*D[i]/.1667)\n",
" else:\n",
" plt.plot(train[:,0][i],train[:,1][i],'go',ms=20*D[i]/.1667)\n",
"xlim(0,4)\n",
"ylim(0,4)\n",
"xlabel('x1');\n",
"ylabel('x2');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGoRJREFUeJzt3X9s1PXhx/HX0Ta2R2sLf1jNtQnOdqMHcj0mFhYdp0Qc\nRRompqGGUhWTpklF3R9TE6NtxohGFoPDEUi2mkLSWgmJ/bqDyGLPX6UrzDIX0VCIDXeVNGnIzZZd\nx3n9fP/guHm0R399Pr0rPB/JJb37vPn0xVv5vO7z+dznczbDMAwBAG5685IdAACQGigEAIAkCgEA\nEEUhAAAkUQgAgCgKAQAgycJCiEQicrvd2rBhw7jLt2/fruLiYrlcLvX09FgVAwAwSZYVwu7du+V0\nOmWz2cYs83q9Onv2rHp7e7V//37V1dVZFQMAMEmWFEIgEJDX69XTTz+t8a57a29vV01NjSSprKxM\nwWBQAwMDVkQBAExSuhUrff755/XGG2/o+++/H3d5f3+/CgsLY88LCgoUCASUn58fe228PQsAwMSm\newMK0/cQPvjgA912221yu93XDXXtsvEKwDCMlH+8+uqrSc9ATjKSk5xXHzNheiF0dnaqvb1dd955\np6qqqvTRRx9p69atcWMcDof8fn/seSAQkMPhMDsKAGAKTC+EnTt3yu/369tvv1Vra6sefPBBNTc3\nx42pqKiIvdbV1aW8vLy4w0UAgNlnyTmEH7t6KGjfvn2SpNraWpWXl8vr9aqoqEjz589XU1OT1TEs\n4/F4kh1hUshpnrmQUSKn2eZKzpmwGTM96GQRm8024+NhAHCzmcm2kyuVAQCSKAQAQBSFAACQRCEA\nAKIoBACAJAoBABBFIQAAJFEIAIAoCgEAIIlCAABEUQgAAEkUAgAgikIAAEiiEAAAURQCAEAShQAA\niKIQAACSKAQAQBSFAACQZEEhjIyMqKysTKWlpXI6nXrppZfGjPH5fMrNzZXb7Zbb7daOHTvMjgFY\nx+dLdgLAEulmrzAzM1MdHR2y2+364YcfdN999+mzzz7TfffdFzdu9erVam9vN/vXA9bz+SSPJ9kp\nANNZcsjIbrdLki5fvqxIJKKFCxeOGWMYhhW/GgAwTabvIUjS6Oioli9frnPnzqmurk5OpzNuuc1m\nU2dnp1wulxwOh3bt2jVmjCQ1NDTEfvZ4PPLwrgwA4vh8PvlMOoxpMyx8q/7vf/9bDz/8sF577bW4\njfnQ0JDS0tJkt9t15MgRPfvsszpz5kx8MJuNvQikpoaGKw8gBc1k22npp4xyc3O1fv16nTx5Mu71\nnJyc2GGldevWKRwO6+LFi1ZGAQBMwPRCGBwcVDAYlCSFQiEdO3ZMbrc7bszAwECswbq7u2UYxrjn\nGQAAs8f0cwgXLlxQTU2NRkdHNTo6qurqaq1Zs0b79u2TJNXW1urQoUPau3ev0tPTZbfb1draanYM\nAMAUWXoOYSY4h4CUxTkEpLCUPYcAAJg7KAQAgCQKAQAQRSEAACRRCACAKAoBACCJQgAARFEIAABJ\nFAIAIIpCAABIohAAAFEUAgBAEoUAAIiiEAAAkigEAECU6V+QgxTl80k/+l5rINlaDrfogPeARiIj\nykzLVHV5taoerUp2rJsahXCzoBCQIoLBoCrrK3U847iGFw3HXv/0/z5V0+Emte1pU15eXhIT3rw4\nZARg1gSDQa19Yq2OFR6LKwNJGl40rGOFx7T2ibWx72XH7KIQAMyayvpKnSg5IWUmGJApnVh8QpX1\nlbOaC1eYXggjIyMqKytTaWmpnE6nXnrppXHHbd++XcXFxXK5XOrp6TE7BoAU03K4Rcczjicug6uy\npK6MLrUcbpmVXPgf0wshMzNTHR0dOnXqlL788kt1dHTos88+ixvj9Xp19uxZ9fb2av/+/aqrqzM7\nBoAUc8B7YMxhokSGFg3poPegxYlwLUtOKtvtdknS5cuXFYlEtHDhwrjl7e3tqqmpkSSVlZUpGAxq\nYGBA+fn5ceMaGhpiP3s8Hnk4KToxn+/K41qNjeOP93jm7snmRH9XqyWaS6vN5f9WkkYiI1MaH4qE\nLEpyY/H5fPKZ9O/AkkIYHR3V8uXLde7cOdXV1cnpdMYt7+/vV2FhYex5QUGBAoHAdQsBk3S9jcaN\nNp/J3EDeaHM5CzLTJjpWFC8rLcuiJDeWa98sN87gDYslJ5XnzZunU6dOKRAI6JNPPhm3vQzDiHtu\ns9msiAIgRVSXVyu7L3tSY3P6clRdXm1xIlzL0k8Z5ebmav369Tp58mTc6w6HQ36/P/Y8EAjI4XBY\nGQVAklU9WqVV4VXSREeOQtLK8EptfnTzrOTC/5heCIODg7HPEIdCIR07dkxutztuTEVFhZqbmyVJ\nXV1dysvLG3O4CMCNp21Pm1Z8vSJxKYSkFd+sUNuetlnNhStMP4dw4cIF1dTUaHR0VKOjo6qurtaa\nNWu0b98+SVJtba3Ky8vl9XpVVFSk+fPnq6mpyewYAFJQXl6ePnznQ1XWV6oro0tDi4Ziy3L6crQy\nvFJt73ClcrLYjGsP5qcIm8025jwDZoBbV5inoYGTyiZoOdyig96DCkVCykrL0pbyLdzLyAQz2XZS\nCMBUUQhIYTPZdnLrCgCAJAoBABBFIQAAJFEIAIAoCgEAIIlCAABEUQgAAEkUAgAgikIAAEiiEAAA\nURQCAEAShQAAiKIQAACSKAQAQBSFAACQRCEAAKIoBACAJAsKwe/364EHHtCSJUu0dOlSvfXWW2PG\n+Hw+5ebmyu12y+12a8eOHWbHAABMUbrZK8zIyNCbb76p0tJSDQ8P6+c//7keeughlZSUxI1bvXq1\n2tvbzf71AIBpMn0P4fbbb1dpaakkKTs7WyUlJfruu+/GjOP7kgEgtZi+h/BjfX196unpUVlZWdzr\nNptNnZ2dcrlccjgc2rVrl5xO55g/3/CjLzL3eDzyeDxWxgWAOcfn88nn85myLpth0Vv14eFheTwe\nvfzyy9q4cWPcsqGhIaWlpclut+vIkSN69tlndebMmfhgNht7EUhNDQ1XHkAKmsm205JPGYXDYW3a\ntElbtmwZUwaSlJOTI7vdLklat26dwuGwLl68aEUUwHzsqeIGZXohGIahbdu2yel06rnnnht3zMDA\nQKzBuru7ZRiGFi5caHYUwBoUAm5Qpp9D+Pzzz3Xw4EEtW7ZMbrdbkrRz506dP39eklRbW6tDhw5p\n7969Sk9Pl91uV2trq9kxAABTZNk5hJniHAIATF3KnUMAAMw9FAIAQBKFAACIohAAAJIoBABAFIUA\nAJBEIQAAoigEAIAkCgEAEEUhAAAkUQgAgCgKAQAgiUIAAERRCAAASRQCACCKQgAASLLgG9OAG1XL\n4RYd8B7QSGREmWmZqi6vVtWjVcmOBZiGb0wDJhAMBlVZX6njGcc1vGg49np2X7ZWhVepbU+b8vLy\nkpgQ+J+ZbDspBOA6gsGg1j6xVidKTkiZ4wwYkVZ8vUIfvvMhpYCUYNlXaH7//fc6d+7cmNe//PLL\nhH/G7/frgQce0JIlS7R06VK99dZb447bvn27iouL5XK51NPTM8XYwOyorK9MXAaSlCmdWHxClfWV\ns5oLsELCQmhra9PixYu1adMmLVmyRN3d3bFlNTU1CVeYkZGhN998U1999ZW6urr09ttv6+uvv44b\n4/V6dfbsWfX29mr//v2qq6sz4a8CmKvlcIuOZxxPXAZXZUldGV1qOdwyK7kAqyQshN///vf6xz/+\noVOnTqmpqUlbt27V4cOHJ1zh7bffrtLSUklSdna2SkpK9N1338WNaW9vj5VKWVmZgsGgBgYGZvL3\nAEx3wHsg7pzB9QwtGtJB70GLEwHWSvgpo0gkojvuuEOSdO+996qjo0OPPPKI/H7/pFfe19ennp4e\nlZWVxb3e39+vwsLC2POCggIFAgHl5+fHjWtoaIj97PF45PF4Jv27gZkaiYxMaXwoErIoCZCYz+eT\nz+czZV0JC+HWW2/VuXPndNddd0mS7rjjDnV0dOjXv/61vvrqqwlXPDw8rMcee0y7d+9Wdnb2mOXX\nnvSw2Wxjxvy4EIDZlpk20bGieFlpWRYlARK79s1yY2PjtNeV8JDRn/70J42Ojur06dOx12699VYd\nPXpUf/7zn6+70nA4rE2bNmnLli3auHHjmOUOhyNuTyMQCMjhcEwnP2CZ6vJqZfeNfTMznpy+HFWX\nV1ucCLBWwkIoLS1VcXGxKisr9frrr8swDP3nP//Rb37zG7399tsJV2gYhrZt2yan06nnnntu3DEV\nFRVqbm6WJHV1dSkvL2/M4SIg2aoerdKq8CppoiNHIWlleKU2P7p5VnIBVpnwOoRLly7phRde0MmT\nJzU8PKzHH39cL774oubNG79LPvvsM/3yl7/UsmXLYoeBdu7cqfPnz0uSamtrJUn19fU6evSo5s+f\nr6amJi1fvjw+GNchIAVMeB1CSFrxDdchIHXMZNs54a0r0tPTlZWVpVAopJGREf3kJz9JWAaSdN99\n92l0dHTCX7xnz56pJQWSIC8vTx++86Eq6yvVldGloUVDsWU5fTlaGV6ptne4Uhk3hgn3EFwulyoq\nKvTKK69ocHBQtbW1uuWWW/Tee+9ZG4w9BKSYlsMtOug9qFAkpKy0LG0p38K9jJByLL11xYkTJ7Ri\nxYq415qbm7V169Zp/cJJB6MQAGDKuJcRAECShfcyAgDcPCgEAIAkCgEAEEUhAAAkUQgAgCgKAQAg\niUIAAERRCAAASRQCACCKQgAASKIQAABRFAIAQBKFAACIohAAAJIoBABAFIUAAJBkUSE89dRTys/P\n19133z3ucp/Pp9zcXLndbrndbu3YscOKGACAKUi3YqVPPvmknnnmmet+zebq1avV3t5uxa8HAEyD\nJXsI999/vxYsWHDdMXw9JgCkFkv2ECZis9nU2dkpl8slh8OhXbt2yel0jhnX0NAQ+9nj8cjj8cxe\nSACYA3w+n3w+nynrshkWvVXv6+vThg0b9K9//WvMsqGhIaWlpclut+vIkSN69tlndebMmfhgM/ii\naAC4Wc1k25mUTxnl5OTIbrdLktatW6dwOKyLFy8mIwoAICophTAwMBBrsO7ubhmGoYULFyYjCgAg\nypJzCFVVVfr44481ODiowsJCNTY2KhwOS5Jqa2t16NAh7d27V+np6bLb7WptbbUiBgBgCiw7hzBT\nnEMAgKmbc+cQAACph0IAAEiiEAAAURQCAEAShQAAiKIQAACSKAQAQBSFAACQRCEAAKIoBACAJAoB\nABBFIQAAJFEIAIAoCgEAIIlCAABEUQgAAEkWfWMaUpDPJ3k8yU4xp7UcbtEB7wGNREaUmZap6vJq\nVT1alexYgGn4xrSbRUPDlQemLBgMqrK+Usczjmt40XDs9ey+bK0Kr1Lbnjbl5eUlMSHwP3xjGmCR\nYDCotU+s1bHCY3FlIEnDi4Z1rPCY1j6xVsFgMEkJAfOYXghPPfWU8vPzdffddyccs337dhUXF8vl\ncqmnp8fsCIBpKusrdaLkhJSZYECmdGLxCVXWV85qLsAKphfCk08+qaNHjyZc7vV6dfbsWfX29mr/\n/v2qq6szOwJgipbDLTqecTxxGVyVJXVldKnlcMus5AKsYnoh3H///VqwYEHC5e3t7aqpqZEklZWV\nKRgMamBgwOwYwIwd8B4Yc5gokaFFQzroPWhxIsBas/4po/7+fhUWFsaeFxQUKBAIKD8/f8zYhh+d\nBPV4PPLwKZmJ+XxXHtdqbBx/vMfDp48SGImMTGl8KBKyKAmQmM/nk2+8f/PTkJSPnV57Btxms407\nroFPxUzd9TbwzOeUZKZNdKwoXlZalkVJgMSufbPcmOjN3yTM+qeMHA6H/H5/7HkgEJDD4ZjtGMCE\nqsurld2XPamxOX05qi6vtjgRYK1ZL4SKigo1NzdLkrq6upSXlzfu4SIg2aoerdKq8CppoiNHIWll\neKU2P7p5VnIBVjH9kFFVVZU+/vhjDQ4OqrCwUI2NjQqHw5Kk2tpalZeXy+v1qqioSPPnz1dTU5PZ\nEQDTtO1p09on1ib+6GlIWvHNCrW90zbr2QCzcaXyzYIrlaft6pXKXRldGlo0FHs9py9HK8MruVIZ\nKWUm204K4WbBvYxmrOVwiw56DyoUCSkrLUtbyrdwLyOkHAoBACCJexkBAExAIQAAJFEIAIAoCgEA\nIIlCAABEUQgAAEkUAgAgikIAAEiiEAAAURQCAEAShQAAiKIQAACSKAQAQBSFAACQRCEAAKIoBACA\nJAoBABBlSSEcPXpUixcvVnFxsV5//fUxy30+n3Jzc+V2u+V2u7Vjxw4rYgAApiDd7BVGIhHV19fr\nb3/7mxwOh1asWKGKigqVlJTEjVu9erXa29vN/vUAgGkyfQ+hu7tbRUVFWrRokTIyMrR582a9//77\nY8bxfckAkFpM30Po7+9XYWFh7HlBQYH+/ve/x42x2Wzq7OyUy+WSw+HQrl275HQ6x6yroaEh9rPH\n45HH4zE7LgDMaT6fTz6fz5R1mV4INpttwjHLly+X3++X3W7XkSNHtHHjRp05c2bMuB8XAgBgrGvf\nLDc2Nk57XaYfMnI4HPL7/bHnfr9fBQUFcWNycnJkt9slSevWrVM4HNbFixfNjgIAmALTC+Gee+5R\nb2+v+vr6dPnyZb377ruqqKiIGzMwMBA7h9Dd3S3DMLRw4UKzowAApsD0Q0bp6enas2ePHn74YUUi\nEW3btk0lJSXat2+fJKm2tlaHDh3S3r17lZ6eLrvdrtbWVrNjAACmyGak6Md9bDYbn0QCgCmaybaT\nK5UBAJIoBABAFIUAAJBEIQAAoigEAIAkCgEAEEUhAAAkUQgAgCgKAQAgiUIAAERRCAAASRQCACCK\nQgAASKIQAABRFAIAQBKFAACIohAAAJIoBABAFIUwQz6fL9kRJoWc5pkLGSVymm2u5JwJSwrh6NGj\nWrx4sYqLi/X666+PO2b79u0qLi6Wy+VST0+PFTFmxVz5n4Sc5pkLGSVymm2u5JwJ0wshEomovr5e\nR48e1enTp9XS0qKvv/46bozX69XZs2fV29ur/fv3q66uzuwYAIApMr0Quru7VVRUpEWLFikjI0Ob\nN2/W+++/Hzemvb1dNTU1kqSysjIFg0ENDAyYHQUAMBWGyd577z3j6aefjj0/cOCAUV9fHzfmkUce\nMT7//PPY8zVr1hgnT56MGyOJBw8ePHhM4zFd6TKZzWab1Lgr2/zEf+7a5QAAa5l+yMjhcMjv98ee\n+/1+FRQUXHdMIBCQw+EwOwoAYApML4R77rlHvb296uvr0+XLl/Xuu++qoqIibkxFRYWam5slSV1d\nXcrLy1N+fr7ZUQAAU2D6IaP09HTt2bNHDz/8sCKRiLZt26aSkhLt27dPklRbW6vy8nJ5vV4VFRVp\n/vz5ampqMjsGAGCqpn32wSRHjhwxfvaznxlFRUXGa6+9Nu6YZ555xigqKjKWLVtmfPHFF7Oc8IqJ\ncnZ0dBi33nqrUVpaapSWlhq/+93vZj3jk08+adx2223G0qVLE45JhbmcKGcqzKVhGMb58+cNj8dj\nOJ1OY8mSJcbu3bvHHZfsOZ1MzmTPaSgUMu69917D5XIZJSUlxosvvjjuuGTP5WRyJnsuf+yHH34w\nSktLjUceeWTc5VOdz6QWwg8//GDcddddxrfffmtcvnzZcLlcxunTp+PG/PWvfzXWrVtnGIZhdHV1\nGWVlZSmZs6Ojw9iwYcOsZ/uxTz75xPjiiy8SbmhTYS4NY+KcqTCXhmEYFy5cMHp6egzDMIyhoSHj\npz/9aUr+/zmZnKkwp5cuXTIMwzDC4bBRVlZmfPrpp3HLU2EuDWPinKkwl1f94Q9/MB5//PFx80xn\nPpN664q5cs3CZHJKyf9k1P33368FCxYkXJ4KcylNnFNK/lxK0u23367S0lJJUnZ2tkpKSvTdd9/F\njUmFOZ1MTin5c2q32yVJly9fViQS0cKFC+OWp8JcTianlPy5lK58GMfr9erpp58eN8905jOphdDf\n36/CwsLY84KCAvX39084JhAIzFrGRBmuzWmz2dTZ2SmXy6Xy8nKdPn16VjNORirM5WSk4lz29fWp\np6dHZWVlca+n2pwmypkKczo6OqrS0lLl5+frgQcekNPpjFueKnM5Uc5UmEtJev755/XGG29o3rzx\nN+PTmc+kFoJZ1yxYbTK/b/ny5fL7/frnP/+pZ555Rhs3bpyFZFOX7LmcjFSby+HhYT322GPavXu3\nsrOzxyxPlTm9Xs5UmNN58+bp1KlTCgQC+uSTT8a9N1AqzOVEOVNhLj/44APddtttcrvd191bmep8\nJrUQ5so1C5PJmZOTE9vVXLduncLhsC5evDirOSeSCnM5Gak0l+FwWJs2bdKWLVvG/YefKnM6Uc5U\nmtPc3FytX79eJ0+ejHs9VebyqkQ5U2EuOzs71d7erjvvvFNVVVX66KOPtHXr1rgx05nPpBbCXLlm\nYTI5BwYGYm3c3d0twzDGPfaYTKkwl5ORKnNpGIa2bdsmp9Op5557btwxqTCnk8mZ7DkdHBxUMBiU\nJIVCIR07dkxutztuTCrM5WRyJnsuJWnnzp3y+/369ttv1draqgcffDA2d1dNZz5Nvw5hKubKNQuT\nyXno0CHt3btX6enpstvtam1tnfWcVVVV+vjjjzU4OKjCwkI1NjYqHA7HMqbCXE4mZyrMpSR9/vnn\nOnjwoJYtWxbbKOzcuVPnz5+PZU2FOZ1MzmTP6YULF1RTU6PR0VGNjo6qurpaa9asSbl/65PJmey5\nHM/VQ0EznU+bkQqnywEAScc3pgEAJFEIAIAoCgEAIIlCAABEUQjANPzqV7/SggULtGHDhmRHAUxD\nIQDT8Nvf/lYHDhxIdgzAVBQCcB0nTpyQy+XSf//7X126dElLly7V6dOn9eCDD457GwtgLkvqhWlA\nqluxYoUqKir08ssvKxQKqbq6eszNzoAbBYUATOCVV17RPffco6ysLP3xj39MdhzAMhwyAiYwODio\nS5cuaXh4WKFQKPZ6Kt4pFpgJCgGYQG1trXbs2KHHH39cL7zwQux17vqCGw2HjIDraG5u1i233KLN\nmzdrdHRUv/jFL9TR0aFXX31V33zzjYaHh1VYWKi//OUveuihh5IdF5gRbm4HAJDEISMAQBSFAACQ\nRCEAAKIoBACAJAoBABBFIQAAJEn/D+JbjL4VOHLmAAAAAElFTkSuQmCC\n"
}
],
"prompt_number": 20
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we try to ensure that the point which was misclassified previously is learnt in this iteration, which would come as a consequence of it being assigned higher weight.From observation, we can see that classfier #4 would give the minimum error, $$\\epsilon_t$$"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 4 predicts 'Positive' if x2>=2.5 and 'Negative' otherwise\n",
"classifier_4_pred=array(train[:,1]>2.5)\n",
"misclassify_4_count=sum(classifier_4_pred!=bool_y)\n",
"classifier_4_out=-1*np.ones(len(y))\n",
"for i in range(0,len(y)):\n",
" if classifier_4_pred[i]==True:\n",
" classifier_4_out[i]=1"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 21
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"misclassify_4_count"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 22,
"text": [
"2"
]
}
],
"prompt_number": 22
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Thus, although 2 samples have been misclassifed, sample number 5 which had highest weight has been correctly classified. We calculate error for this iteration."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"epsilon_2=2*D[0]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 23
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"alpha_2=math.log((1-epsilon_2)/epsilon_2)\n",
"print alpha_2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1.38614437987\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we again update the weights as we did after the first iteration."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for i in range(0,len(D)):\n",
" D[i]=D[i]*math.exp(-1*alpha_2*y[i]*classifier_4_out[i])\n",
"print D"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[ 0.02500675 0.399988 0.02500675 0.02500675 0.12500375 0.399988 ]\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we normalize the weights.\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"z_t=sum(D)\n",
"D=(1.0/z_t)*D\n",
"print \"Updated weights after second iteration\",D"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Updated weights after second iteration [ 0.02500675 0.399988 0.02500675 0.02500675 0.12500375 0.399988 ]\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for i in range(0,len(y)):\n",
" if y[i]==1:\n",
" #Point belonging to positive class\n",
" plt.plot(train[:,0][i],train[:,1][i],'r+',ms=20*D[i]/.1667)\n",
" else:\n",
" plt.plot(train[:,0][i],train[:,1][i],'go',ms=20*D[i]/.1667)\n",
"xlim(0,4)\n",
"ylim(0,4)\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHKpJREFUeJzt3XtwVPXh9/HPQlJgcwMcibCJj5ekNeGyCVVTEWSVn4Pc\nUip2CoyQQfiZyRRRO15wBmtQyuCIPx9aLA952mYGHY0t42/M6JIZL1kRYoxoQAu0BGrK7oZJmzJp\nSH7BrNnz/MGaxyX35GzOLnm/ZnZmd8+Xsx++yvnsfs9ebIZhGAIAjHpjrA4AAIgOFAIAQBKFAAAI\noRAAAJIoBABACIUAAJAUwULo7OxUbm6uli1b1uP2TZs2KTMzU06nU7W1tZGKAQAYoIgVwq5du5Sd\nnS2bzdZtm9vt1unTp1VXV6eSkhIVFRVFKgYAYIAiUgg+n09ut1sbNmxQT597Ky8vV0FBgSQpLy9P\nzc3NamxsjEQUAMAAxUVip48++qheeOEFtbS09Ljd7/crPT2963ZaWpp8Pp9SU1O77uvplQUAoH9D\n/QIK018hvP3225oyZYpyc3P7DHX5tp4KwDCMqL8888wzlmcgJxnJSc5vL8NheiFUVVWpvLxc119/\nvVatWqUPPvhAa9euDRvjcDjk9Xq7bvt8PjkcDrOjAAAGwfRC2L59u7xer7766iuVlZXprrvu0r59\n+8LG5Ofnd91XXV2tiRMnhi0XAQBGXkTOIXzXt0tBe/fulSQVFhZq8eLFcrvdysjIUEJCgkpLSyMd\nI2JcLpfVEQaEnOaJhYwSOc0WKzmHw2YMd9EpQmw227DXwwBgtBnOsZNPKgMAJFEIAIAQCgEAIIlC\nAACEUAgAAEkUAgAghEIAAEiiEAAAIRQCAEAShQAACKEQAACSKAQAQAiFAACQRCEAAEIoBACAJAoB\nABBCIQAAJFEIAIAQCgEAICkChXDx4kXl5eUpJydH2dnZeuqpp7qN8Xg8SklJUW5urnJzc7Vt2zaz\nYwAABinO7B2OHz9elZWVstvt+uabbzR37lwdOnRIc+fODRs3f/58lZeXm/3wAIAhisiSkd1ulyR1\ndHSos7NTkydP7jbGMIxIPDQAYIhMf4UgScFgULNnz9aZM2dUVFSk7OzssO02m01VVVVyOp1yOBza\nuXNntzGSVFxc3HXd5XLJ5XJFIi4AxCyPxyOPx2PKvmxGBJ+q//vf/9bChQu1Y8eOsIP5hQsXNHbs\nWNntdh04cEAPP/ywTp06FR7MZuNVBAAM0nCOnRF9l1FKSoqWLFmiI0eOhN2flJTUtay0aNEiBQIB\nnT9/PpJRAAD9MH3JqKmpSXFxcZo4caLa29v17rvv6plnngkb09jYqClTpshms6mmpkaGYfR4ngHA\nlaWtrU2Hqg7pzffelPdfXgWCAXUanRprG6v4MfFKvypd9/7HvZo7Z64SEhKsjjvqmF4I586dU0FB\ngYLBoILBoNasWaMFCxZo7969kqTCwkLt379fe/bsUVxcnOx2u8rKysyOASBK+Hw+PfubZ/Vn35/l\n/9qvc8nnFJgakNJ7GNwhlb5eqql7p8oxzqGZaTP19ENPKy0tbcRzj0YRPYcwHJxDAGLbwcMHteP/\n7tCxtmNquLFBmjCEnbRL085MkzPRqc0bNuuO2+8wPeeVZjjHTgoBgKmqPqnSYzsf0/Hxx9VyQ4s5\nZyqDUvLfkjX94nTtfGyn5uTNMWGnVyYKAYDlWlpatPHpjar4R4X++YN/SrYIPIghXf3Xq3XPlHv0\n8raXlZSUFIEHiW0UAgBLlb5eqhfeeEEnM09KiSPwgK1SVl2WHv/Z41q3at0IPGDsoBAAWOLixYta\n94t1eqf9HV247sKIP35SfZKW2peq9L9KNW7cuBF//GhEIQAYcV9//bUWrF6gqv9VJSPFun+rtn/b\nNOfvc/T+a+9TCoriD6YBuHKt+8U6y8tAkowUQ1XXVmndL1g6Gi4KAcCglb5eqrf/523Ly+BbxkRD\nb//P2yp9vdTqKDGNJSMAg9LS0qIfrf2RTuaetDpKN1m1WfrklU9G9buPWDICMGI2Pr3x0ruJotDJ\nzJP6+ZafWx0jZlEIAAas6pMqVTRWjMxbS4ciUaporNDHNR9bnSQmsWQEYMDm/HSOPp7+cWQ+dGYW\nQ7rt+G2q+lOV1UkswZIRgIg7ePigjo8/Ht1lIEk26fj44zp4+KDVSWIOhQBgQHb8bsel7yaKAS03\ntGjH73ZYHSPmUAgA+uXz+XSs9VjsHDHGSMdaj8nv91udJKbEyn9eIHqY9Pu1seTZ3zx76SusY0jD\njQ169tfPWh0jplAIwGCNwkL4s+/PQ/s9AytNkL70f2l1iphCIQDoU2trq/wXY3PppaG9QW1tbVbH\niBkUAoA+Hf74sM6lnLM6xpA0JDfo8MeHrY4RMygEAH168703L/0GcgwKTAvozXfftDpGzDC9EC5e\nvKi8vDzl5OQoOztbTz31VI/jNm3apMzMTDmdTtXW1podA5cbheveMIf3X17pe1anGKLvSWf/ddbq\nFDHD9EIYP368KisrdfToUX3xxReqrKzUoUOHwsa43W6dPn1adXV1KikpUVFRkdkxcDkKAUMUCMbm\nq4NvxXr+kRQXiZ3a7XZJUkdHhzo7OzV58uSw7eXl5SooKJAk5eXlqbm5WY2NjUpNTQ0bV1xc3HXd\n5XLJ5XJFIu6VzeO5dNm69dJtl+vSBX37dt568u1c9uQKnN9Oo9PqCMMS6/n74/F45DHpCV9ECiEY\nDGr27Nk6c+aMioqKlJ2dHbbd7/crPT2963ZaWpp8Pl+fhYAh+u4BivkcuP4O7KNoLsfaxlodYVhi\nPX9/Ln+yvLWvJyz9iMhJ5TFjxujo0aPy+Xw6ePBgj+11+Zcv2WzR/gUpMe4Ke9aKkRM/Jt7qCMMS\n6/lHUkTfZZSSkqIlS5boyJEjYfc7HA55vd6u2z6fTw6HI5JRQCFgiNKvSpc6rE4xRB3StVdda3WK\nmGF6ITQ1Nam5uVmS1N7ernfffVe5ublhY/Lz87Vv3z5JUnV1tSZOnNhtuQhAdLj3P+5V/LnYfJYd\n3xCve+++1+oYMcP0cwjnzp1TQUGBgsGggsGg1qxZowULFmjv3r2SpMLCQi1evFhut1sZGRlKSEhQ\naSm/gwpEq7lz5mrq/5mqs4q9t29Oa5mm22+73eoYMcP0Qpg5c6Y+//zzbvcXFhaG3d69e7fZDw0g\nAhISEuQY74jNQpgwTQkJCVbHiBl8UhkYrFF4PmZG2gyp3eoUg9QuzXTMtDpFTOEnNAH0y+fzKe/R\nPDXMiJ2vwJ7252mq+d81o+4NK/yEJoCISktLkzPRKQWtTjJAnZIz0TnqymC4KAQAA7J5w2Yl/y3Z\n6hgDkvxVsp76z56/Rw29oxAADMgdt9+h6RenS9G+khuUpl+crnlz5lmdJOZQCAAGbOdjO3X1X6+2\nOkafrv7r1Xrx8RetjhGTKAQAAzYnb47umXKP1Gp1kl60Svek3qPbbr3N6iQxiXcZARiUlpYW/Wjt\nj3Qy96TVUbrJqs3SJ698oqSkJKujWIZ3GQEYMcnJyXr8Z48rqT66DrpJ9UmXco3iMhguCgHAoK1b\ntU5L7Utl+3d0fEuxrdmmZQnLtG7VOqujxDSWjAAMyddff60Fqxeo6toqGROt+7dqa7Zpztk5ev+1\n9zVu3DjLckQLlowAjLhx48bp/dfe18qOlZYtHyXVJ2lVYBVlYBJeIQAYttLXS/XCGy/oZOZJKXEE\nHrBVyqrL0uM/e5xlossM59hJIQAwxYULF/TzLT9XxT8q9M8f/FOKxOkFQ5rylylamLpQL297mRPI\nPaAQAESNqk+q9NjOx3R8/HG13NBizsJ0UEr+W7KmX5yuFx9/kc8Z9IFCABB1Dh4+qB2/26FjrcfU\ncGODNGEIO2mXHGccciY6tfk/N/N1FANAIQCIWn6/X8/++ll96f9SDe0NakhpUGBqQPpeD4M7Lv3s\n5bSWaZo2YZpmOmbql5t+ybeWDgKFACAmtLW16fDHh/Xf7/23/t70dwWCAXUanRprG6v4MfG69qpr\nde/d9+r2227nl86GKKoKwev1au3atfrHP/4hm82mBx98UJs2bQob4/F49OMf/1g33HCDJGnFihXa\nsmVLeDAKAQAGbTjHTtN/Uzk+Pl4vvfSScnJy1Nraqh/+8Ie6++67lZWVFTZu/vz5Ki8vN/vhAQBD\nZPoH06655hrl5ORIkhITE5WVlaWGhu4/u8ezfwCILqa/Qviu+vp61dbWKi8vL+x+m82mqqoqOZ2X\nfuJu586dys7O7vbni4uLu667XC65RuGPmwNAXzwejzwejyn7ithJ5dbWVrlcLm3ZskXLly8P23bh\nwgWNHTtWdrtdBw4c0MMPP6xTp06FB+McAgAMWlSdVJakQCCgpUuXatGiRXrkkUf6HX/99dfrs88+\n0+TJk/9/MAoBAAYtqr7czjAMrV+/XtnZ2b2WQWNjY1fgmpoaGYYRVgYAgJFn+jmEw4cP69VXX9Ws\nWbOUm5srSdq+fbvOnj0rSSosLNT+/fu1Z88excXFyW63q6yszOwYAIBB4oNpAHAFiaolIwBAbKIQ\nAACSKAQAQAiFAACQRCEAAEIoBACAJAoBABBCIQAAJFEIAIAQCgEAIIlCAACEUAgAAEkUAgAghEIA\nAEiiEAAAIRQCAEAShQAACKEQAACSKAQAQEifhdDS0qIzZ850u/+LL77o9c94vV7deeedmj59umbM\nmKFf//rXPY7btGmTMjMz5XQ6VVtbO8jYAACz9VoIf/zjH3XTTTdpxYoVmj59umpqarq2FRQU9LrD\n+Ph4vfTSSzp+/Liqq6v18ssv6+TJk2Fj3G63Tp8+rbq6OpWUlKioqMiEvwoAYDh6LYRf/epX+uyz\nz3T06FGVlpZq7dq1evPNN/vd4TXXXKOcnBxJUmJiorKystTQ0BA2pry8vKtU8vLy1NzcrMbGxuH8\nPYAR4ff7teSBJVrywBL5/X6r4wCmiuttQ2dnp6ZOnSpJuvXWW1VZWamlS5fK6/UOeOf19fWqra1V\nXl5e2P1+v1/p6eldt9PS0uTz+ZSamho2rri4uOu6y+WSy+Ua8GMDkfDg0w/KPc3ddf2dP7xjcSKM\ndh6PRx6Px5R99VoIycnJOnPmjG688UZJ0tSpU1VZWamf/OQnOn78eL87bm1t1X333addu3YpMTGx\n23bDMMJu22y2bmO+WwgAgO4uf7K8devWIe+r1yWj3/72twoGgzpx4kTXfcnJyaqoqNDvf//7Pnca\nCAS0YsUK3X///Vq+fHm37Q6HI+yVhs/nk8PhGEp+YESVPFeixQ2LtbhhsUqeK7E6DmAqm3H5U/XL\nzJgxQ2vWrNETTzyh9vZ2Pfnkk/r0009VXV3d43jDMFRQUKCrrrpKL730Uo9j3G63du/eLbfbrerq\naj3yyCPd9mez2bq9igAA9G04x85+C6GtrU1PPvmkjhw5otbWVq1evVqbN2/WmDE9v7g4dOiQ7rjj\nDs2aNatrGWj79u06e/asJKmwsFCStHHjRlVUVCghIUGlpaWaPXu2aX8pABithnPs7PUcQteAuDhN\nmDBB7e3tunjxom644YZey0CS5s6dq2Aw2O8D7969e3BJAQAR1e8nlW+99VaNHz9eR44c0UcffaTX\nXntNP/3pT0ciGwBgBPW7ZPTpp5/qlltuCbtv3759Wrt2bWSDsWQEAIMW0XMIVqEQAGDwhnPs5Mvt\nAACSKAQAQAiFAACQRCEAAEIoBACAJAoBABBCIQAAJFEIAIAQCgEAIIlCAACEUAgAAEkUAgAghEIA\nAEiiEAAAIRQCAEAShQAACIlIITzwwANKTU3VzJkze9zu8XiUkpKi3Nxc5ebmatu2bZGIAQAYhLhI\n7HTdunV66KGH+vyZzfnz56u8vDwSDw8AGIKIvEKYN2+eJk2a1OcYfh4TAKJLRF4h9Mdms6mqqkpO\np1MOh0M7d+5UdnZ2t3HFxcVd110ul1wu18iFBIAY4PF45PF4TNmXzYjQU/X6+notW7ZMX375Zbdt\nFy5c0NixY2W323XgwAE9/PDDOnXqVHiwYfxQNACMVsM5dlryLqOkpCTZ7XZJ0qJFixQIBHT+/Hkr\nogAAQiwphMbGxq4Gq6mpkWEYmjx5shVRAAAhETmHsGrVKn344YdqampSenq6tm7dqkAgIEkqLCzU\n/v37tWfPHsXFxclut6usrCwSMfBdHo/EORgAfYjYOYTh4hyCyYqLL10AXNFi7hwCACD6UAgAAEkU\nAgAghEIAAEiiEAAAIRQCAEAShQAACKEQAACSKAQAQAiFAACQRCEAAEIoBACAJAoBABBCIQAAJFEI\nAIAQCgEAIIlCAACEUAgAAEkUAgAgxPRCeOCBB5SamqqZM2f2OmbTpk3KzMyU0+lUbW2t2REAAENg\neiGsW7dOFRUVvW53u906ffq06urqVFJSoqKiIrMjAACGwPRCmDdvniZNmtTr9vLychUUFEiS8vLy\n1NzcrMbGRrNjABHh9/u15IElWvLAEvn9fqvjAKaKG+kH9Pv9Sk9P77qdlpYmn8+n1NTUbmOLi4u7\nrrtcLrlcrhFIaBGP59IlUrZujdy+JcnlunS5wj349INyT3N3XX/nD+9YnAijncfjkcekY8eIF4Ik\nGYYRdttms/U47ruFcMUbiQPqaJpPYJS4/Mny1mE8+RvxQnA4HPJ6vV23fT6fHA7HSMcAhqTkuRI9\n+PSDXdeBK8mIF0J+fr52796tlStXqrq6WhMnTuxxuQiIRg6Hg2UiXLFML4RVq1bpww8/VFNTk9LT\n07V161YFAgFJUmFhoRYvXiy3262MjAwlJCSotLTU7AgAgCGwGZcv6EcJm83W7VwDhqG4mHMIwCgw\nnGMnn1QGAEiiEAAAIRQCAEAShQAACKEQAACSKAQAQAiFAACQRCEAAEIoBACAJAoBABBCIQAAJFEI\nAIAQCgEAIIlCAACEUAgAAEkUAgAghEIAAEiiEAAAIRTCaOFyWZ0AQJSLSCFUVFTopptuUmZmpp5/\n/vlu2z0ej1JSUpSbm6vc3Fxt27YtEjHwXRQCgH7Emb3Dzs5Obdy4Ue+9954cDoduueUW5efnKysr\nK2zc/PnzVV5ebvbDAwCGyPRXCDU1NcrIyNB1112n+Ph4rVy5Um+99Va3cYZhmP3QAIBhMP0Vgt/v\nV3p6etfttLQ0ffLJJ2FjbDabqqqq5HQ65XA4tHPnTmVnZ3fbV3Fxcdd1l8slF8seABDG4/HI4/GY\nsi/TC8Fms/U7Zvbs2fJ6vbLb7Tpw4ICWL1+uU6dOdRv33UIAAHR3+ZPlrVu3Dnlfpi8ZORwOeb3e\nrtter1dpaWlhY5KSkmS32yVJixYtUiAQ0Pnz582OAgAYBNML4eabb1ZdXZ3q6+vV0dGhN954Q/n5\n+WFjGhsbu84h1NTUyDAMTZ482ewoAIBBMH3JKC4uTrt379bChQvV2dmp9evXKysrS3v37pUkFRYW\nav/+/dqzZ4/i4uJkt9tVVlZmdgwAwCDZjCh9u4/NZuOdSAAwSMM5dvJJZQCAJAoBABBCIQAAJFEI\nAIAQCgEAIIlCAACEUAgAAEkUAgAghEIAAEiiEAAAIRQCAEAShQAACKEQAACSKAQAQAiFAACQRCEA\nAEIoBACAJAoBABBCIQyTx+OxOsKAkNM8sZBRIqfZYiXncESkECoqKnTTTTcpMzNTzz//fI9jNm3a\npMzMTDmdTtXW1kYixoiIlf9JyGmeWMgokdNssZJzOEwvhM7OTm3cuFEVFRU6ceKEXn/9dZ08eTJs\njNvt1unTp1VXV6eSkhIVFRWZHQMAMEimF0JNTY0yMjJ03XXXKT4+XitXrtRbb70VNqa8vFwFBQWS\npLy8PDU3N6uxsdHsKACAwTBM9qc//cnYsGFD1+1XXnnF2LhxY9iYpUuXGocPH+66vWDBAuPIkSNh\nYyRx4cKFC5chXIYqTiaz2WwDGnfpmN/7n7t8OwAgskxfMnI4HPJ6vV23vV6v0tLS+hzj8/nkcDjM\njgIAGATTC+Hmm29WXV2d6uvr1dHRoTfeeEP5+flhY/Lz87Vv3z5JUnV1tSZOnKjU1FSzowAABsH0\nJaO4uDjt3r1bCxcuVGdnp9avX6+srCzt3btXklRYWKjFixfL7XYrIyNDCQkJKi0tNTsGAGCwhnz2\nwSQHDhwwfvCDHxgZGRnGjh07ehzz0EMPGRkZGcasWbOMzz//fIQTXtJfzsrKSiM5OdnIyckxcnJy\njOeee27EM65bt86YMmWKMWPGjF7HRMNc9pczGubSMAzj7NmzhsvlMrKzs43p06cbu3bt6nGc1XM6\nkJxWz2l7e7tx6623Gk6n08jKyjI2b97c4zir53IgOa2ey+/65ptvjJycHGPp0qU9bh/sfFpaCN98\n841x4403Gl999ZXR0dFhOJ1O48SJE2Fj3nnnHWPRokWGYRhGdXW1kZeXF5U5KysrjWXLlo14tu86\nePCg8fnnn/d6oI2GuTSM/nNGw1wahmGcO3fOqK2tNQzDMC5cuGB8//vfj8r/PweSMxrmtK2tzTAM\nwwgEAkZeXp7x0UcfhW2Phrk0jP5zRsNcfuvFF180Vq9e3WOeocynpV9dESufWRhITsn6d0bNmzdP\nkyZN6nV7NMyl1H9Oyfq5lKRrrrlGOTk5kqTExERlZWWpoaEhbEw0zOlAckrWz6ndbpckdXR0qLOz\nU5MnTw7bHg1zOZCckvVzKV16M47b7daGDRt6zDOU+bS0EPx+v9LT07tup6Wlye/39zvG5/ONWMbe\nMlye02azqaqqSk6nU4sXL9aJEydGNONARMNcDkQ0zmV9fb1qa2uVl5cXdn+0zWlvOaNhToPBoHJy\ncpSamqo777xT2dnZYdujZS77yxkNcylJjz76qF544QWNGdPzYXwo82lpIZj1mYVIG8jjzZ49W16v\nV8eOHdNDDz2k5cuXj0CywbN6Lgci2uaytbVV9913n3bt2qXExMRu26NlTvvKGQ1zOmbMGB09elQ+\nn08HDx7s8buBomEu+8sZDXP59ttva8qUKcrNze3z1cpg59PSQoiVzywMJGdSUlLXS81FixYpEAjo\n/PnzI5qzP9EwlwMRTXMZCAS0YsUK3X///T3+w4+WOe0vZzTNaUpKipYsWaIjR46E3R8tc/mt3nJG\nw1xWVVWpvLxc119/vVatWqUPPvhAa9euDRszlPm0tBBi5TMLA8nZ2NjY1cY1NTUyDKPHtUcrRcNc\nDkS0zKVhGFq/fr2ys7P1yCOP9DgmGuZ0IDmtntOmpiY1NzdLktrb2/Xuu+8qNzc3bEw0zOVAclo9\nl5K0fft2eb1effXVVyorK9Ndd93VNXffGsp8mv45hMGIlc8sDCTn/v37tWfPHsXFxclut6usrGzE\nc65atUoffvihmpqalJ6erq1btyoQCHRljIa5HEjOaJhLSTp8+LBeffVVzZo1q+ugsH37dp09e7Yr\nazTM6UByWj2n586dU0FBgYLBoILBoNasWaMFCxZE3b/1geS0ei578u1S0HDn02ZEw+lyAIDl+MU0\nAIAkCgEAEEIhAAAkUQgAgBAKARiCe+65R5MmTdKyZcusjgKYhkIAhuCJJ57QK6+8YnUMwFQUAtCH\nTz/9VE6nU19//bXa2to0Y8YMnThxQnfddVePX2MBxDJLP5gGRLtbbrlF+fn52rJli9rb27VmzZpu\nX3YGXCkoBKAfv/zlL3XzzTdrwoQJ+s1vfmN1HCBiWDIC+tHU1KS2tja1traqvb296/5o/KZYYDgo\nBKAfhYWF2rZtm1avXq0nn3yy636+9QVXGpaMgD7s27dP48aN08qVKxUMBjVnzhxVVlbqmWee0V/+\n8he1trYqPT1df/jDH3T33XdbHRcYFr7cDgAgiSUjAEAIhQAAkEQhAABCKAQAgCQKAQAQQiEAACRJ\n/w9/1ZK7KH5D+AAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 27
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Thus, after the second iteration, we see that now 2 points have much more weights than the other ones. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now see that classifier 2 will give the least weighted error and thus we use it for next iteration."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Classifier 2 predicts 'Negative' if x1>=2.5 and 'Positive' otherwise\n",
"classifier_2_pred=array(train[:,0]<2.5)\n",
"misclassify_2_count=sum(classifier_2_pred!=bool_y)\n",
"classifier_2_out=-1*np.ones(len(y))\n",
"for i in range(0,len(y)):\n",
" if classifier_2_pred[i]==True:\n",
" classifier_2_out[i]=1"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 28
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"misclassify_2_count"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 29,
"text": [
"2"
]
}
],
"prompt_number": 29
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The two samples which have been misclassified have their weights as 0.025, thus, we have\n",
"$$\\epsilon_3=2*.025=.05$$"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"epsilon_3=.05\n",
"alpha_3=math.log((1-epsilon_3)/epsilon_3)\n",
"print alpha_3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"2.94443897917\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for i in range(0,len(D)):\n",
" D[i]=D[i]*math.exp(-1*alpha_2*y[i]*classifier_2_out[i])\n",
"print D"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[ 0.00625263 0.100012 0.100012 0.100012 0.03125562 0.100012 ]\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"z_t=sum(D)\n",
"D=(1.0/z_t)*D\n",
"print \"Updated weights after third iteration\",D"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Updated weights after third iteration [ 0.01428988 0.22856947 0.22856947 0.22856947 0.07143224 0.22856947]\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for i in range(0,len(y)):\n",
" if y[i]==1:\n",
" #Point belonging to positive class\n",
" plt.plot(train[:,0][i],train[:,1][i],'r+',ms=20*D[i]/.1667)\n",
" else:\n",
" plt.plot(train[:,0][i],train[:,1][i],'go',ms=20*D[i]/.1667)\n",
"xlim(0,4)\n",
"ylim(0,4)\n",
"xlabel('x1');\n",
"ylabel('x2');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHzxJREFUeJzt3X9Mlef9//HnkWNWjz9QoWA5kO+6wiagwmFakrXO02o/\nHaDEpd1SWZW0NuFrYq1dOotL0+rmLFWbfuzs/Gq2mth22M0sKdGDibac1mocpeDaAo1oaoSDwx4M\n1h90cuD+/uEp6xEov+77cJDXIyHhnPvyvt5e0ft17uu+7+vYDMMwEBGRMW/cSBcgIiKRQYEgIiKA\nAkFERIIUCCIiAigQREQkSIEgIiKAhYHQ2dmJy+ViyZIlvW5fs2YNKSkpZGRkUFNTY1UZIiIyQJYF\nwvbt20lLS8Nms/XY5vF4OH36NA0NDezevZtVq1ZZVYaIiAyQJYHQ1NSEx+PhiSeeoLfn3srKyigs\nLAQgOzubtrY2WlparChFREQGyG7FTp9++mm2bt3KV1991et2n89HUlJS9+vExESampqIj4/vfq+3\nMwsREenfUBegMP0M4cCBA8TFxeFyub6zqJu39RYAhmFE/M8LL7ww4jWoTtWoOlXnNz/DYXogHD9+\nnLKyMu68806WLVvGe++9x4oVK0LaOJ1OGhsbu183NTXhdDrNLkVERAbB9EDYvHkzjY2NfPHFF+zb\nt4/777+fvXv3hrTJz8/vfu/EiRNMnTo1ZLpIRETCz5JrCN/2zVTQrl27ACgqKiI3NxePx0NycjIT\nJ05kz549VpdhGbfbPdIlDIjqNM9oqBFUp9lGS53DYTOGO+lkEZvNNuz5MBGRsWY4x049qSwiIoAC\nQUREghQIIiICKBBERCRIgSAiIoACQUREghQIIiICKBBERCRIgSAiIoACQUREghQIIiICKBBERCRI\ngSAiIoACQUREghQIIiICKBBERCRIgSAiIoACQUREghQIIiICWBAIX3/9NdnZ2WRmZpKWlsb69et7\ntPF6vURHR+NyuXC5XGzatMnsMkREZJDsZu/wtttuo6KiAofDQSAQ4N577+XDDz/k3nvvDWm3YMEC\nysrKzO5eRESGyJIpI4fDAcD169fp7Oxk+vTpPdoYhmFF1yIiMkSmnyEAdHV1kZWVxZkzZ1i1ahVp\naWkh2202G8ePHycjIwOn08m2bdt6tAHYsGFD9+9utxu3221FuSIio5bX68Xr9ZqyL5th4Uf1S5cu\n8eCDD1JSUhJyML98+TJRUVE4HA7Ky8t56qmnOHXqVGhhNpvOIkREBmk4x05L7zKKjo4mLy+Pqqqq\nkPcnT57cPa2Uk5NDR0cHFy9etLIUERHph+mB4Pf7aWtrA6C9vZ3Dhw/jcrlC2rS0tHQnWGVlJYZh\n9HqdQUREwsf0awjnz5+nsLCQrq4uurq6WL58OQsXLmTXrl0AFBUVsX//fnbu3IndbsfhcLBv3z6z\nyxARkUGy9BrCcOgagojI4EXsNQQRERk9FAgiIgIoEEREJEiBICIigAJBRESCFAgiIgIoEEREJMiS\nxe1ERPri9/vxHPHgOeqhtb2VTqOTKFsUMRNiyJ2fS+6iXGJjY0e6zDFJD6aJSFjU1tVSvK2Ymq9q\n8MX6IJ7QOYouoAWcfidZ0VmUPFNCWmrPVZDluw3n2KlAEBFL1dbXsm7LOqraq7iQcmFg8xIBiGuI\nY+6EuWxZt4X01HTL67xVKBBEJOIEAgGKNxdT+mkpzTObhzZBHYCEzxMomF3Ai799Ebtds9z9USCI\nSEQJBAIsKljEsfhjBGIDw96f3W/nngv3cOStIwqFfmgtIxGJKMWbi00LA4BAbIBjccco3lxsyv6k\ndwoEETFVbX0tpZ+WmhYG3wjEBij9pJS6+jpT9yv/pSkjETFV3mN5eBI91tzUHoA8Xx4HXj9gwc5v\nDZoyEpGIUFtXS1V7lXVPONnho2sf6SzBIgoEETHN+pfX37i11EIXUi5QvE3XEqygQBAZLK93pCuI\nSH6/n+pL1davf2CH6kvV+P1+izsaexQIIoOlQOiV54jnxhPIYdAc20z5u+Vh6WssMT0Qvv76a7Kz\ns8nMzCQtLY3169f32m7NmjWkpKSQkZFBTU2N2WWISJh5jnpuLEcRBka8wcGjB8PT2RhieiDcdttt\nVFRUcPLkST755BMqKir48MMPQ9p4PB5Onz5NQ0MDu3fvZtWqVWaXITfTp1qxWGt7a/jmHMZB67XW\nMHU2dlgy2+dwOAC4fv06nZ2dTJ8+PWR7WVkZhYWFAGRnZ9PW1kZLSwvx8aEfLzZs2ND9u9vtxu12\nW1Hurc/rhfvug4oK0BgOntcbGqgbN4Zud7s1rkCn0XlL9xepvF4vXpM+8FkSCF1dXWRlZXHmzBlW\nrVpFWlroioU+n4+kpKTu14mJiTQ1NX1nIMgwuN0Kg+Ho7YCvf5s9RNmibun+ItXNH5Y33vyBZRAs\nOcEbN24cJ0+epKmpiQ8++KDX9Lr5wQmbzWZFKfINhYFYLGZCzI0lrMOhC2IcMWHqbOywdMYvOjqa\nvLw8qqqqQt53Op00NjZ2v25qasLpdFpZiohYLHd+LrSEpy9bi428+Xnh6WwMMT0Q/H4/bW1tALS3\nt3P48GFcLldIm/z8fPbu3QvAiRMnmDp1ao/pIpGIpbOtXuUuysXpD88HuwR/AjkLc8LS11hi+jWE\n8+fPU1hYSFdXF11dXSxfvpyFCxeya9cuAIqKisjNzcXj8ZCcnMzEiRPZs2eP2WWIWEeB0KvY2Fhc\nU1z4Aj5rH04LQFZ0lr5m0wJa3E5ETFNbV8v9v7ufC6nWLV8RVx9HxQsV+nrNPmhxOxGJCOlp6cyd\nMBfMXfn6vwIwzzFPYWARBYKImGrLui0kfJ5gyb4T6hPY8pstluxbFAgiYrL01HSWzV6G3W/uhQS7\n307BnAKdHVhI1xBExHSBQIBFv1rEsTh9p3K46RqCiEQUu93OkbeOsPb2tSR8ljD0awoBSPgsgbW3\nr1UYhIHOEETEUnX1dazbuo7Kq5V8+cMvB3ZLagDiGuKY55jHlt9s0TTRIAzn2KlAEJGwqKuvo3hb\nMdWXqvHF+GAGoXMUXcC/wdnqJCs6i5JnShQEQ6BAEJFRw+/3U/5uOQePHqT1WiudRidRtihiHDHk\nzc8jZ2GOHjobBgWCiIgAuqgsIiImUCCIiAigQBARkSAFgoiIAAoEEREJUiCIiAigQBARkSAFgoiI\nAAoEEREJMj0QGhsbue+++0hPT2fWrFm8+uqrPdp4vV6io6NxuVy4XC42bdpkdhkiIjJIpq8lO378\neF555RUyMzO5cuUKP/7xj3nggQdITU0NabdgwQLKysrM7l5ERIbI9DOEGTNmkJmZCcCkSZNITU2l\nubm5RzutUyQiElks/baJs2fPUlNTQ3Z2dsj7NpuN48ePk5GRgdPpZNu2baSl9VzmdsOGDd2/u91u\n3G63leWKiIw6Xq8Xr9dryr4sW+30ypUruN1unnvuOZYuXRqy7fLly0RFReFwOCgvL+epp57i1KlT\noYVptVMRkUGLuOWvOzo6WLx4MTk5Oaxdu7bf9nfeeScff/wx06dP/29hCgQRkUGLqOWvDcNg5cqV\npKWl9RkGLS0t3QVXVlZiGEZIGIiISPiZfg3h2LFjvPnmm8yZMweXywXA5s2bOXfuHABFRUXs37+f\nnTt3YrfbcTgc7Nu3z+wyRERkkPSNaSIit5CImjISEZHRSYEgIiKAAkFERIIUCCIiAigQREQkSIEg\nIiKAAkFERIIUCCIiAli82qnIrcDv9+M54sFz1ENreyudRidRtihiJsSQOz+X3EW5xMbGjnSZIsOm\nJ5VF+lBbV0vxtmJqvqrBF+uDeELPqbuAFnD6nWRFZ1HyTAlpqT2XcRcJp4hb7dQMCgQZKbX1tazb\nso6q9ioupFwY2Hl0AOIa4pg7YS5b1m0hPTXd8jpFeqNAEDFBIBCgeHMxpZ+W0jyzeWgTqgFI+DyB\ngtkFvPjbF7HbNSsr4aVAEBmmQCDAooJFHIs/RiA2MOz92f127rlwD0feOqJQkLDS4nYiw1S8udi0\nMAAIxAY4FneM4s3FpuxPJBwUCDLm1dbXUvppqWlh8I1AbIDST0qpq68zdb8iVtGUkYx5eY/l4Un0\nWHMTdgDyfHkceP2ABTsX6UlTRiJDVFtXS1V7lXVP5Njho2sf6SxBRgUFgoxp619ef+PWUgtdSLlA\n8TZdS5DIp0CQMcvv91N9qdr65/XtUH2pGr/fb3FHIsPznYHw1VdfcebMmR7vf/LJJ33+mcbGRu67\n7z7S09OZNWsWr776aq/t1qxZQ0pKChkZGdTU1AyybJHh8xzx3HgCOQyaY5spf7c8LH2JDFWfgfC3\nv/2NmTNn8tBDD5Genk5lZWX3tsLCwj53OH78eF555RVqa2s5ceIEr732GvX19SFtPB4Pp0+fpqGh\ngd27d7Nq1SoT/ioig+M56rmxHEUYGPEGB48eDE9nIkPUZyD84Q9/4OOPP+bkyZPs2bOHFStW8I9/\n/KPfHc6YMYPMzEwAJk2aRGpqKs3NzSFtysrKukMlOzubtrY2WlpahvP3EBm01vbW8E2ajoPWa61h\n6kxkaPqcPe3s7OSOO+4A4O6776aiooLFixfT2Ng44J2fPXuWmpoasrOzQ973+XwkJSV1v05MTKSp\nqYn4+NCPaxs2bOj+3e1243a7B9y3SH86jc5buj8ZG7xeL16v15R99RkIU6ZM4cyZM9x1110A3HHH\nHVRUVPDzn/+c2trafnd85coVHn74YbZv386kSZN6bL/5PlmbzdajzbcDQcRsUbaoW7o/GRtu/rC8\ncePGIe+rzxPmP/3pT3R1dVFX99/7p6dMmcKhQ4f4y1/+8p077ejo4KGHHuLRRx9l6dKlPbY7nc6Q\nM42mpiacTudQ6hcZspgJMTeWsA6HLohxxISpM5Gh6TMQMjMzSUlJ4Ze//CUvvfQShmFw7do1fv3r\nX/Paa6/1uUPDMFi5ciVpaWmsXbu21zb5+fns3bsXgBMnTjB16tQe00UiVsudnwthunRla7GRNz8v\nPJ2JDFG/S1dcvXqVZ599lqqqKq5cuUJBQQHFxcWMG9d7lnz44Yf89Kc/Zc6cOd3TQJs3b+bcuXMA\nFBUVAbB69WoOHTrExIkT2bNnD1lZWaGFaekKsZjf7yfz/2bim239rafOT52c/H8n9c1qYrnhHDv7\nfSTHbrczYcIE2tvb+frrr/nBD37QZxgA3HvvvXR19X8evmPHjsFVKmKy2NhYXFNc+AI+ax9OC0BW\ndJbCQCJevzfd3X333dx2221UVVVx9OhR/vrXv/KLX/wiHLWJWK7kmRLiGuIs7SOuIY6SZ0os7UPE\nDP1+Lvrzn//MvHnzgBt3GpWVlXXP/4uMdulp6cydMBdPwLrVTuc55um7lmVU0PLXMubV1tfyP8//\nD82zmvtvPEgJnyZw+PeHFQgSNlr+WmQY0lPTWTZ7GXa/uacIdr+dgjkFCgMZNXSGIELwO5V/tYhj\ncfpOZRnddIYgMkx2u50jbx1h7e1rSfgsAYaaCQFI+CyBtbevVRjIqKMzBJGb1NXXsW7rOiqvVvLl\nD78c2MXmwI27ieY55rHlN1s0TSQjZjjHTgWCSB/q6uso3lZM9aVqfDE+mEHoOXUX8G9wtjrJis6i\n5JkSBYGMOAWCiIX8fj/l75Zz8OhBWq+10ml0EmWLIsYRQ978PHIW5uihM4kYCgQREQF0UVlEREyg\nQBAREUCBICIiQQoEEREBFAgiIhKkQBAREUCBICIiQQoEEREBFAgiIhJkSSA8/vjjxMfHM3v27F63\ne71eoqOjcblcuFwuNm3aZEUZIiIyCJaszfvYY4/x5JNPsmLFij7bLFiwgLKyMiu6FxGRIbDkDGH+\n/PlMmzbtO9tonSIRkcgyIt/eYbPZOH78OBkZGTidTrZt20ZaWs9lgzds2ND9u9vtxu12h69IEZFR\nwOv14vV6TdmXZaudnj17liVLlvDpp5/22Hb58mWioqJwOByUl5fz1FNPcerUqdDCtNqpiMigjbrV\nTidPnozD4QAgJyeHjo4OLl68OBKliIhI0IgEQktLS3eCVVZWYhgG06dPH4lSREQkyJJrCMuWLeP9\n99/H7/eTlJTExo0b6ejoAKCoqIj9+/ezc+dO7HY7DoeDffv2WVGGiIgMgr4xTUTkFjLqriGIiEjk\nUSCIiAigQBARkSAFgoiIAAoEEREJUiCIiAigQBARkSAFgoiIACO02qmMAK8XtFrskPj9fjxHPHiO\nemhtb6XT6CTKFkXMhBhy5+eSuyiX2NjYkS5TZNj0pPJYsWHDjR8ZsNq6Woq3FVPzVQ2+WB/EE3pO\n3QW0gNPvJCs6i5JnSkhL7bmMu0g4DefYqTMEkZvU1teybss6qtqruJByAf5PHw3HAXeA7w4fvoCP\nf278J3MnzGXLui2kp6aHs2QRUygQRIICgQDFm4sp/bSU5pnNg/vfYYcLqRfwBDycfP4kBbMLePG3\nL2K367+YjB66qCzCjTBYVLCI7V9up3nWIMPg2+zQPKuZ//3yf1n0q0UEAgFT6xSxkgJBBCjeXMyx\n+GMEYs05gAdiAxyLO0bx5mJT9icSDgoEGfNq62sp/bTUtDD4RiA2QOknpdTV15m6XxGrKBBkzFu3\nZd2NawYWaE5tZt3WdZbsW8RsCgQZ02rraqlqr7Lu9go7fHTtI50lyKigQJAxbf3L62/cWmqhCykX\nKN6mawkS+RQIMmb5/X6qL1Vbf/O1HaovVeP3+y3uSGR4TA+Exx9/nPj4eGbPnt1nmzVr1pCSkkJG\nRgY1NTVmlyAyIJ4jnhtPIIdBc2wz5e+Wh6UvkaEyPRAee+wxDh061Od2j8fD6dOnaWhoYPfu3axa\ntcrsEkQGxHPUc2M5ijAw4g0OHj0Yns5Ehsj0QJg/fz7Tpk3rc3tZWRmFhYUAZGdn09bWRktLi9ll\niPSrtb01fJOm46D1WmuYOhMZmrA/V+/z+UhKSup+nZiYSFNTE/HxPT+qbfjWYmxutxu3Vuu8sWqp\n1zv4P7dx49D6c7tv2VVSO43OW7o/GRu8Xi/eoRwTejEiC63cvBKfzWbrtd0Grc7Z03AO0BrPEFG2\nqFu6Pxkbbv6wvHGoH/4YgbuMnE4njY2N3a+bmppwOp3hLkOEmAkxN5awDocuiHHEhKkzkaEJeyDk\n5+ezd+9eAE6cOMHUqVN7nS4SsVru/FwI0+UrW4uNvPl54elMZIhMnzJatmwZ77//Pn6/n6SkJDZu\n3EhHRwcARUVF5Obm4vF4SE5OZuLEiezZs8fsEkQGJHdRLs79Tnx3WH/raYI/gZyFOZb3IzIcpgdC\naWlpv2127NhhdrcigxYbG4trigtfwGft1bQAZEVn6Ws2JeLpSWUZ00qeKSGuIc7SPuIa4ih5psTS\nPkTMoECQMS09LZ25E+aCVd9jE4B5jnn6rmUZFRQIMuZtWbeFhM8TLNl3Qn0CW36zxZJ9i5hNgSBj\nXnpqOstmL8PuN/dCgt1vp2BOgc4OZNRQIIgAJb8t4Z4L95gWCna/nXsu3MOLv33RlP2JhIMCQQSw\n2+0ceesIa29fS8JnCUO/phCAhM8SWHv7Wo68dQS7fUQWAxAZEgWCSJDdbmfr81s5/LvD5PnyuL3u\n9oEHQwDi6uPI8+Vx+HeH2fr8VoWBjDr6Fytyk7TUNA68foC6+jqKtxVTfakaX4wPZhD6EaoL+Dc4\nW51kRWdR8kKJrhfIqGYzbl5pLkLYbLYei+DJMHi9t+yqpVbz+/2Uv1vOwaMHab3WSqfRSZQtihhH\nDHnz88hZmKOHziRiDOfYqUAQEbmFDOfYqWsIIiICKBBERCRIgSAiIoACQUREghQIIiICKBBERCRI\ngSAiIoACQUREghQIIiICWBQIhw4dYubMmaSkpPDSSy/12O71eomOjsblcuFyudi0aZMVZYiIyCCY\nvrhdZ2cnq1ev5siRIzidTubNm0d+fj6pqakh7RYsWEBZWZnZ3YuIyBCZfoZQWVlJcnIy3//+9xk/\nfjyPPPII77zzTo92WqdIRCSymH6G4PP5SEpK6n6dmJjIP//5z5A2NpuN48ePk5GRgdPpZNu2baSl\n9Vw2eMOGDd2/u91u3FqtU0QkhNfrxev1mrIv0wPBZrP12yYrK4vGxkYcDgfl5eUsXbqUU6dO9Wj3\n7UAQEZGebv6wvHHjxiHvy/QpI6fTSWNjY/frxsZGEhMTQ9pMnjwZh8MBQE5ODh0dHVy8eNHsUkRE\nZBBMD4S5c+fS0NDA2bNnuX79Om+//Tb5+fkhbVpaWrqvIVRWVmIYBtOnTze7FBERGQTTp4zsdjs7\nduzgwQcfpLOzk5UrV5KamsquXbsAKCoqYv/+/ezcuRO73Y7D4WDfvn1mlyEiIoOkb0wTEbmF6BvT\nRERk2BQIIiICKBBERCRIgSAiIoACQUREghQIIiICKBBERCRIgSAiIoACQUREghQIIiICKBBERCRI\ngSAiIoACQUREghQIIiICKBBERCRIgSAiIoACQUREghQIIiICKBCGzev1jnQJA6I6zTMaagTVabbR\nUudwWBIIhw4dYubMmaSkpPDSSy/12mbNmjWkpKSQkZFBTU2NFWWExWj5R6I6zTMaagTVabbRUudw\nmB4InZ2drF69mkOHDlFXV0dpaSn19fUhbTweD6dPn6ahoYHdu3ezatUqs8sQEZFBMj0QKisrSU5O\n5vvf/z7jx4/nkUce4Z133glpU1ZWRmFhIQDZ2dm0tbXR0tJidikiIjIYhsn+/ve/G0888UT36zfe\neMNYvXp1SJvFixcbx44d6369cOFCo6qqKqQNoB/96Ec/+hnCz1DZMZnNZhtQuxvH/L7/3M3bRUTE\nWqZPGTmdThobG7tfNzY2kpiY+J1tmpqacDqdZpciIiKDYHogzJ07l4aGBs6ePcv169d5++23yc/P\nD2mTn5/P3r17AThx4gRTp04lPj7e7FJERGQQTJ8ystvt7NixgwcffJDOzk5WrlxJamoqu3btAqCo\nqIjc3Fw8Hg/JyclMnDiRPXv2mF2GiIgM1pCvPpikvLzc+NGPfmQkJycbJSUlvbZ58sknjeTkZGPO\nnDlGdXV1mCu8ob86KyoqjClTphiZmZlGZmam8fvf/z7sNT722GNGXFycMWvWrD7bRMJY9ldnJIyl\nYRjGuXPnDLfbbaSlpRnp6enG9u3be2030mM6kDpHekzb29uNu+++28jIyDBSU1ON4uLiXtuN9FgO\npM6RHstvCwQCRmZmprF48eJetw92PEc0EAKBgHHXXXcZX3zxhXH9+nUjIyPDqKurC2lz8OBBIycn\nxzAMwzhx4oSRnZ0dkXVWVFQYS5YsCXtt3/bBBx8Y1dXVfR5oI2EsDaP/OiNhLA3DMM6fP2/U1NQY\nhmEYly9fNn74wx9G5L/PgdQZCWN69epVwzAMo6Ojw8jOzjaOHj0asj0SxtIw+q8zEsbyGy+//LJR\nUFDQaz1DGc8RXbpitDyzMJA6YeTvjJo/fz7Tpk3rc3skjCX0XyeM/FgCzJgxg8zMTAAmTZpEamoq\nzc3NIW0iYUwHUieM/Jg6HA4Arl+/TmdnJ9OnTw/ZHgljOZA6YeTHEm7cjOPxeHjiiSd6rWco4zmi\ngeDz+UhKSup+nZiYiM/n67dNU1NT2Grsq4ab67TZbBw/fpyMjAxyc3Opq6sLa40DEQljORCROJZn\nz56lpqaG7OzskPcjbUz7qjMSxrSrq4vMzEzi4+O57777SEtLC9keKWPZX52RMJYATz/9NFu3bmXc\nuN4P40MZzxENBLOeWbDaQPrLysqisbGRf/3rXzz55JMsXbo0DJUN3kiP5UBE2lheuXKFhx9+mO3b\ntzNp0qQe2yNlTL+rzkgY03HjxnHy5Emampr44IMPel0bKBLGsr86I2EsDxw4QFxcHC6X6zvPVgY7\nniMaCKPlmYWB1Dl58uTuU82cnBw6Ojq4ePFiWOvsTySM5UBE0lh2dHTw0EMP8eijj/b6Hz9SxrS/\nOiNpTKOjo8nLy6Oqqirk/UgZy2/0VWckjOXx48cpKyvjzjvvZNmyZbz33nusWLEipM1QxnNEA2G0\nPLMwkDpbWlq607iyshLDMHqdexxJkTCWAxEpY2kYBitXriQtLY21a9f22iYSxnQgdY70mPr9ftra\n2gBob2/n8OHDuFyukDaRMJYDqXOkxxJg8+bNNDY28sUXX7Bv3z7uv//+7rH7xlDG0/TnEAZjtDyz\nMJA69+/fz86dO7Hb7TgcDvbt2xf2OpctW8b777+P3+8nKSmJjRs30tHR0V1jJIzlQOqMhLEEOHbs\nGG+++SZz5szpPihs3ryZc+fOddcaCWM6kDpHekzPnz9PYWEhXV1ddHV1sXz5chYuXBhx/9cHUudI\nj2VvvpkKGu542oxIuFwuIiIjTt+YJiIigAJBRESCFAgiIgIoEEREJEiBIDIEP/vZz5g2bRpLliwZ\n6VJETKNAEBmCdevW8cYbb4x0GSKmUiCIfIePPvqIjIwM/vOf/3D16lVmzZpFXV0d999/f6/LWIiM\nZiP6YJpIpJs3bx75+fk899xztLe3s3z58h6LnYncKhQIIv14/vnnmTt3LhMmTOCPf/zjSJcjYhlN\nGYn0w+/3c/XqVa5cuUJ7e3v3+5G4UqzIcCgQRPpRVFTEpk2bKCgo4Nlnn+1+X6u+yK1GU0Yi32Hv\n3r1873vf45FHHqGrq4uf/OQnVFRU8MILL/D5559z5coVkpKSeP3113nggQdGulyRYdHidiIiAmjK\nSEREghQIIiICKBBERCRIgSAiIoACQUREghQIIiICwP8HvQboCR6yeSMAAAAASUVORK5CYII=\n"
}
],
"prompt_number": 33
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Since the problem specified us to do only 3 iterations, we stop at this point. Next, we need to combine the three classifiers according to the following rule:\n",
"$$H(x)=sgn(\\displaystyle\\sum_{t=1}^{3}\\alpha_th_t(x))$$\n",
"We have:\n",
"$$H(x)=sgn(0.8046*(1.5-x1)+1.386*(x2-2.5)+2.944*(2.5-x1))$$\n",
"or\n",
"$$H(x)=sgn(5.2-3.75x1+1.4x2)$$\n",
"We now plot this classifier and compare this with the Decision Tree classifier."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"subplot(1,2,1)\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"adaboost_x2=np.linspace(0,4,1000)\n",
"adaboost_x1=(1.4*adaboost_x2+5.2)/3.75\n",
"plt.plot(adaboost_x1,adaboost_x2,'y')\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"xlabel('x1');\n",
"ylabel('x2');\n",
"title('ADABoost')\n",
"subplot(1,2,2)\n",
"plt.plot(x1_pos,x2_pos,'r+',ms=20)\n",
"plt.plot(x1_neg,x2_neg,'go',ms=20)\n",
"plt.plot([1.5,1.5,1.5,1.5,1.5],[0,1,2,3,4],'k')\n",
"plt.plot([2.5,2.5,2.5],[2.5,3.5,5],'k')\n",
"plt.plot([1.5,2.5,4],[2.5,2.5,2.5],'k')\n",
"\n",
"xlim(0,4);\n",
"ylim(0,4);\n",
"title('Complex Decision Tree')\n",
"xlabel('x1');\n",
"ylabel('x2');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEVCAYAAADgh5I1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtU1HXeB/D3MANxGxhAQAS8QgleADUxw5hStzRx7bFd\npSNaWQ/5VGZPe7LaWrF8Kiu77Naa7cVCSytbCwtNCUZEA7JQW9FEjxdAQkiGO8ww83n+IGYZGWAu\nv+E3l8/rHM5hZr7znc8P3sOH33UkRERgjDHm9jzELoAxxphj4IbAGGMMADcExhhjv+KGwBhjDAA3\nBMYYY7/ihsAYYwwANwTG2CBGjx6Nb775RuwyzHbo0CGMHz9+0HEvvfQSHnzwwSGoyHlwQ7AzpVKJ\n4OBgaDQaw3333nsvrrvuOgQEBCAgIACTJk3CM888g6ampj7Pz8rKgoeHB0pLS43uf//99yGVSiGX\nyyGXyzFu3Di8++67dl0WlUqF6Ohou74G+4+PPvoI06ZNg1wux4gRIzB//nwcPnx4yOuQSCSQSCSC\nznltfseOHYv7778fFRUVNs89a9YsnD59etBxTz/9NP72t7/Z/Hq9vfjii4Zl8vHxgUwmM9yeNGmS\noK9lD9wQ7OjChQsoLS1FWFgYcnJyDPdLJBKsXbsWTU1NqK+vx9atW1FcXIybb74ZbW1thnFEhOzs\nbEyaNAnZ2dl95r/55pvR3NyM5uZmfPbZZ3jyySdx7NixIVk2Zl+vv/46Hn/8cTz77LO4cuUKKisr\n8fDDDxvlyNn15LepqQl5eXnw8fHB1KlTcfLkSbFLs9ozzzxjeE++++67mDlzpuH2jz/+aBhHRHDE\nc4K5IdhRdnY25syZg4yMDHzwwQdGj/WEwcvLC9OmTUNOTg5++eUXbN261TDm0KFDaGpqwltvvYWd\nO3dCq9WanAMAEhMTERcXZ/SfUU5ODiZMmICgoCDceuutRo+dOnUKSqUSQUFBmDhxIvbs2WN4LDc3\nFxMmTEBAQACioqLw+uuvo62tDfPmzcPly5chl8sREBCAn3/+WZgfFDPS2NiIdevW4a9//SsWLVoE\nHx8fSKVS3Hnnndi4cSMAoLOzE2vWrEFkZCQiIyPx+OOPG9ZCVSoVoqKi8OqrryIsLAwjRozA559/\njtzcXFx//fUICQnByy+/bHi9rKws3H333Vi6dCkCAgIwdepUnDhxwmRtRISXX34ZMTExGDZsGJYs\nWYKGhgYAwKpVq3D33Xcbxq5duxZz5szpdzl78iuRSDB27Fi88847SE1NRVZWlmFMcXExZs6ciaCg\nICQmJuLgwYOGx65evYr77rsPkZGRCA4Oxl133WVY/t5rshs3bkRUVBQCAgIwfvx45OfnG5Y7IyPD\nMG6g98vo0aOxadMmJCQkQKFQYOnSpejs7Ox32XqWr/d7VKlU4tlnn8XNN98MPz8/nD9/HqdPn8bc\nuXMREhKC8ePH49NPPzWM7+zsxB/+8AeMGjUKw4cPx6pVq9DR0THga9qMmN2MGzeOtm/fTmfOnCFP\nT0+6cuUKERHde++99Oyzz/YZv3z5clqyZInh9v33308PPPAAERFFRUXRZ599Znhs69atlJKSYrhd\nUlJCCoWCKioqiIjop59+Ij8/P8rLy6Ouri565ZVXKCYmhrRaLWk0Gho3bhy99NJLpNVqKT8/n+Ry\nOZ05c4aIiIYPH05FRUVERKRWq+mHH34gIiKVSkVRUVFC/oiYCXv37iWZTEY6na7fMc899xzddNNN\nVFdXR3V1dTRz5kx67rnniIiooKCAZDIZvfDCC9TV1UV/+9vfKCQkhO655x5qaWmhkydPko+PD124\ncIGIiNatW0eenp702WefUVdXF7322ms0ZswY6urqIiKi0aNH0zfffENERG+++SbddNNNVF1dTRqN\nhjIzMyk9PZ2IiNra2uj666+n999/nwoLC2nYsGFUXV1tsv5r89vjn//8J4WHhxMRUVVVFYWEhNDe\nvXuJiOjAgQMUEhJC9fX1REQ0f/58Wrp0KanVatJqtVRYWGhY/p6cnj59mqKjo6mmpoaIiC5evEjn\nzp0jIqKsrCxatmwZEQ38fun5GSQnJ1NNTQ1dvXqV4uLi6N133x3w93jtMqamptKoUaOovLycdDod\nqdVqioqKovfff590Oh2VlZXRsGHDqLy8nIiI1qxZQ7/97W+poaGBmpubKS0tjZ5++ukBX9NW3BDs\n5NChQ+Tt7U1NTU1ERJSQkEBvvPEGEfXfENauXUtz584lIqLW1lYKCAigr7/+moiIHnvsMfrtb39r\nGLt161aSyWSkUChILpeTRCKh1atXGx5//vnnjZqLXq+nyMhIUqlUVFhYSMOHDzd67fT0dMrKyiIi\nopEjR9KWLVuosbHRaEzvNxqzn+3bt/f5/Vxr3Lhxhj+URERff/01jR49moi6f08+Pj6k1+uJiKip\nqYkkEgmVlpYaxk+dOpW++OILIupuCDfddJPhMb1eTxEREYZ/Cno3hLi4OMP3RESXL18mT09PQ/Mq\nKSmhoKAgGjVqFO3cubPf+vtrCHv37iVPT08iInr55ZcpIyPD6PHbb7+dPvjgA7p8+TJ5eHiQWq3u\nM0fvnFZUVFBYWBjl5eWRRqMxGrdu3TpDQ+jv/XLw4EHDz+DDDz80PP7kk0/SQw891O/ymVpGpVJJ\n69atM9zeuXMnzZo1y+g5//3f/03r168nvV5Pfn5+huZFRHTkyBEaM2bMgK9pK95kZCcffPABfvOb\n30AulwMAfve73xk2G1E/2w6rq6sREhICANi9ezc8PT0xe/Zsw/P37t2LX375xTB+xowZaGhoQFNT\nE37++Wf8+9//xjPPPAMAqKmpwciRIw1jJRIJoqOjUV1djZqamj47h0eNGoXq6moAwGeffYbc3FyM\nHj0aSqUSxcXFQvxImJlCQkJQX18PvV7f75jLly9j1KhRhtsjR47E5cuXjebo2RHs4+MDAAgPDzc8\n7uPjg5aWFsPtqKgow/cSiQRRUVFG8/W4cOEC7rrrLgQFBSEoKAjx8fGQyWSora0FAEyfPh1jx44F\n0J1ZS/V+D1y8eBGffvqp4bWCgoJw+PBh/Pzzz6isrERwcDACAwMHnC8mJgZvvvkmsrKyEB4ejvT0\ndNTU1PQZd/ny5X7fLz2GDx9u+P7an5+5er/vLl68iJKSEqPl++ijj1BbW4v6+nq0tbVh6tSphsfm\nzZuH+vp6i1/TEtwQ7KC9vR2ffPIJ8vPzERERgYiICGzatAknTpzAiRMnTB610dLSgry8PMyaNQtA\nd0Npbm5GVFQUIiIisHjxYmi1Wnz44YcmXzMsLAz/9V//ZdgXMGLECFy8eNHwOBGhsrISUVFRGDFi\nBCorK40a08WLFw1/FKZNm4bPP/8cdXV1WLRoEX7/+98DgOBHmjDTbrrpJlx33XXYvXt3v2NGjBiB\nCxcuGG5funQJI0aMsPo1KysrDd/r9XpUVVWZnG/kyJHYt28fGhoaDF9tbW2IiIgAALzzzjvQaDQY\nMWIEXnnlFYvr2L17t+E9MHLkSGRkZBi9VnNzM5588klER0fj6tWraGxsHHTO9PR0HDp0CBcvXjQc\n0HGtyMhIk++XyMhIk3Na+17o/byRI0ciNTW1z/K98847CAkJgY+PD8rLyw2PqdVqk0ciCokbgh18\n/vnnkMlkOHXqFI4fP47jx4/j1KlTSElJMRwt1PPHuLOzE99//z0WLVqEkJAQ3HfffaiurkZ+fj6+\n+uorw/OPHz+OtWvXmjzaCAB++eUX7N69GxMnTgTQ/d/ZV199hfz8fGi1WmzatAne3t6YOXMmpk+f\nDl9fX7zyyivQarVQqVT48ssvsXTpUkPTaWxsNBwWKJVKAXT/h/nLL7/YPZTuLjAwEM8//zwefvhh\nfPHFF2hra4NWq8XevXsNf8zS09OxYcMG1NfXo76+Hs8//7zRDlJLff/999i9eze6urrw5ptvwtvb\nGzNmzOgz7qGHHsIzzzyDS5cuAQDq6uoMRz6dOXMGzz33HD788ENkZ2fjlVdewfHjxwd9bZ1Oh/Pn\nz+PRRx9FYWEh1q1bBwBYtmwZ9uzZg/3790On06GjowMqlQrV1dWIiIjAvHnz8D//8z9Qq9XQarUo\nLCzsM/eZM2eQn5+Pzs5OXHfddfD29jbkubeB3i+m9LeWP5jez1uwYAHOnDmD7du3Q6vVQqvV4rvv\nvsPp06fh4eGBBx98EGvWrEFdXR2A7rWn/fv3W/W6lhTIBHbHHXfQH/7whz73f/LJJzR8+HBatmwZ\neXl5kVwuJ39/f5owYQI99dRThm32L730Ek2bNq3P86urq8nLy4tOnjxJ77//PkmlUvL39yd/f38K\nCwuje+65h+rq6gzjd+/eTfHx8RQYGEhKpdKws4qI6OTJk5SamkqBgYE0YcIE+vzzz4mISKPR0B13\n3EFBQUEUEBBA06dPp8OHDxued//991NISAgFBQUZdtQx+/jwww9p2rRp5OfnR8OHD6cFCxbQt99+\nS0REHR0dtHr1aoqIiKCIiAh67LHHqLOzk4i6t6FHR0cb5tFqteTh4UEXL1403JeSkmLYJp6VlUV3\n3303LVmyhORyOU2ZMoXKysoMY3vvQ9Dr9fT666/TDTfcQHK5nMaNG0d//OMfqauri6ZPn04bN240\nPG/z5s00adKkPtvuicgov35+fjRq1Ci699576fTp00bjSkpKKDU1lYKDgyk0NJQWLFhAly5dIiKi\nq1ev0ooVKyg8PJyCgoJo8eLFfZb/xIkTNH36dJLL5RQcHExpaWmG3GZlZRntoxjo/dL7Z2Dquaa8\n//77RvsIlEol/eMf/zAa89NPP9Gdd95JoaGhFBISQrNnz6bjx48TUffv+JlnnqGxY8dSQEAAxcXF\n0V/+8pcBX9NWEiIHPBiWMTZk1q9fj7Nnz2Lbtm1il8JEZrdNRjqdDklJSUhLSzP5+OrVqxEbG4uE\nhASUlZXZqwzGBOWKueb/CVkPuzWEt956C/Hx8SZ3vuTm5uLs2bOoqKjAe++9h1WrVtmrDMYE5Yq5\ntselKZhzsktDqKqqQm5uLh544AGT/33k5ORgxYoVAIDk5GSo1WrDYWuMOSpXzfW6dev6PViBuReZ\nPSZ9/PHH8eqrr/Z7NEp1dbXR8bhRUVGoqqoyOk6a/2Nh9mbpphIhcg1wtpn9WbsZUPA1hC+//BJh\nYWFISkoasKhrHzP1JqFfrwVi69e6det4riGYq6Xl3/j229EOV5epLzFz7Q7ZdtRldNS6xMx2b4I3\nhCNHjiAnJwdjxoxBeno68vPzsXz5cqMxkZGRRifCVFVV9XsCCHMeanUBFIpbxS7DLjjXzB0I3hBe\nfPFFVFZW4vz589i5cyduu+22PtsnFy5caLivuLgYCoWiz2o1cz4NDQUICrpN7DLsgnPN3IFd9iH0\n1rPKvGXLFgBAZmYm5s+fj9zcXMTExMDPz8/oks/2oFQqeS47z0WkR2PjQcTG/tnmufoj5Fy2coRc\nA6778+3NHepylGV02BPTJBKJzdvD2NBpaTmOkyd/h+TkM2KXYhYx8+UO2XbUZXTUuoRkyzLytYyY\nIFx5/wFj7oIbAhNEQ0M+goK4ITDmzLghMJsR6dDYeAgKhVLsUhhjNuCGwGzW0lIGL68R8PIaPvhg\nxpjD4obAbNZ9uClvLmLM2XFDYDbjHcqMuQZuCMwmer0WjY2HoVCkil0KY8xG3BCYTZqbj8LbezQ8\nPYeJXQpjzEbcEJhN1Gref8CYq+CGwGzSvf/ANa9fxJi74YbArKbXd6KpqRgKxS1il8IYEwA3BGa1\npqZS+PreAJlMIXYpjDEBcENgVuPDTRlzLdwQmNXU6nxuCIy5EG4IzCo6XTuam48iMHCW2KUwxgTC\nDYFZpanpW/j5TYJMJhe7FMaYQLghMKvw/gPGXA83BGYVbgiMuR5uCMxiOl0rWlqOITDwZrFLYYwJ\nSPCG0NHRgeTkZCQmJiI+Ph5PP/10nzEqlQqBgYFISkpCUlISNmzYIHQZzI4aG4vg758EqdRX7FKG\nFGebuTqZ0BN6e3ujoKAAvr6+6OrqQkpKCoqKipCSkmI0LjU1FTk5OUK/PBsC7rq5iLPNXJ1dNhn5\n+nb/56jRaKDT6RAcHNxnDBHZ46XZEOj+QBz3vH4RZ5u5MsHXEABAr9djypQpOHfuHFatWoX4+Hij\nxyUSCY4cOYKEhARERkbitdde6zMGALKysgzfK5VKKJVKe5TLLNDV1YS2tpMICJghdikWUalUUKlU\nNs/D2WaORqhsAwDIjtRqNSUnJ1NBQYHR/U1NTdTa2kpERLm5uRQbG9vnuXYujVmpvv5LKiu7Vewy\nbGZrvjjbA3PUZXTUuoRkyzLa9SijwMBA3HnnnTh69KjR/XK53LDqPW/ePGi1Wly9etWepTCBuOv+\ng2txtpkrErwh1NfXQ61WAwDa29tx4MABJCUlGY2pra01bGctLS0FEZncFsscT0NDvtt+IA5nm7k6\nwfch1NTUYMWKFdDr9dDr9cjIyMDs2bOxZcsWAEBmZiZ27dqFzZs3QyaTwdfXFzt37hS6DGYHWu1V\ntLdXQC6fLnYpouBsM1cnIXLMQyIkEgkfreFg6us/R3X1ZiQkfC12KTYTM1/ukG1HXUZHrUtItiwj\nn6nMzNZ9uKl7bi5izB1wQ2Bm4x3KjLk2bgjMLBpNHTo6LkIunyp2KYwxO+GGwMzS2HgQgYEpkEjs\nci4jY8wBcENgZnHnw00ZcxfcEJhZuvcfuOf1ixhzF9wQ2KA6O2ug0dTC3z9B7FIYY3bEDYENSq1W\nQaG4BRKJVOxSGGN2xA2BDYoPN2XMPXBDYIPihsCYe+CGwAbU0VGJrq4G+PlNFLsUxpid8UHlllKp\nAEf8MBM71dWzdiCRmPe/g1arRfbObHxT8g2utF6BDjpIIUWYXxjmzJiDjCUZ8PT0FLxOJgA3y7al\n3CHb3BAs5SDh7MPODWEwGo0GmzZvwo7CHSgPLYcuXAeE9hqgBz4p+gRv/utNpCvT8cRDT8DLy0vw\nepkN3Czb5nKnbHNDYANSqwsQHf3kgGOam5uRtjINReFF0E3WmR7kAegidPgx4keUnynH1xlfY8/f\n90Aul9uhasaE4W7Z5n0IrF/t7eeh13fC13d8v2Oam5sxd/lcHBxzELph/bxhrqEL1eHgqIOYu2Iu\nmpubhSqXMUG5Y7a5IbB+dW8uUkIikZh8XKPRIG1lGkquLwF8LZzcDyiJKUHayjRoNBrbi2VMQO6a\nbW4IrF9qdf6A+w82bd6EovAiy98wPfyAorAibHp3k5UTMGYf7pptbgjMJCJCQ0P/O5S1Wi12FO4w\ne1W6P7pQHXaodkCr1do0D2NCcedsc0NgJrW3V0Ai8YCPT4zJx7d9vA3loeWCvFZ5WDm2fbxNkLkY\ns5U7Z1vwhtDR0YHk5GQkJiYiPj4eTz/9tMlxq1evRmxsLBISElBWViZ0GcxG/zn/wPT+g7zivO7D\n7wSgC9chryRPkLnsibPtHtwx2z0EP+zU29sbBQUF8PX1RVdXF1JSUlBUVISUlBTDmNzcXJw9exYV\nFRUoKSnBqlWrUFxcLHQpzAZqdQGCgm7v9/ErrVeMj8W2hQdQ11In0GT2w9l2D+6Y7R52OQ/B17d7\nT4xGo4FOp0NwcLDR4zk5OVixYgUAIDk5GWq1GrW1tQgPDzcal5WVZfheqVRCac+TU1Sq7q/BrF9v\n3nxKpTAn04hQV8/+g7FjX+53jA7C/AfVowtdgs53LZVKBZU5P8dBcLbh1Nk2h7tmG7BTQ9Dr9Zgy\nZQrOnTuHVatWIT4+3ujx6upqREdHG25HRUWhqqpqwDeN3VkSJhevq62tHFKpL7y9R/c7RgphL4Ut\ns/M5ktf+0V1v7h+Za3C2BeSgdblrtgE77VT28PDAsWPHUFVVhcLCQpPdi4iMbve3rZoNPXMuVxHm\nFwboBXpBPRDqL9Q6un1xtl2fu2YbsPNRRoGBgbjzzjtx9OhRo/sjIyNRWVlpuF1VVYXIyEh7lsIs\n0NBQgKCggT8uc86MOZDWCvOflLRWijnJcwSZa6hwtl2XO2db8IZQX18PtVoNAGhvb8eBAweQlJRk\nNGbhwoXIzs4GABQXF0OhUPRZpWbiINKjsfHgoGsIGUsyEF8XP+AYc8VfiUfGkgxB5rInzrZ7cMds\n9xB841ZNTQ1WrFgBvV4PvV6PjIwMzJ49G1u2bAEAZGZmYv78+cjNzUVMTAz8/PywdetWoctgVmpt\n/REyWTCuu27g/2o9PT2RnpqO8jPl0IVavxNOWidFujLdKS4bzNl2D+6Y7R4SunaDp4OQSCR9tsU6\nhKysod3xZi6B6qqqehOtradwww1bBh2r0Wjwm2W/wcExB607xb8VSL2Yiv3b9g/55YLFzJc7ZFvQ\nZRShLnfNNp+pzIw0NOQjKMi8j8v08vLCnn/sQXJFMtBm4Qu1Aslnk7Hn73uc9trxzHW5a7a5ITAD\nIh0aGw9BoVCa/Ry5XI4DHxxA6vlUSOvN2xEnrZMi9WIqDnxwwCmvGc/cgztmmxsCM2hpKYOX1wh4\neQ236HlyuRz7t+/HhtgNmHR8EqQ10r6H7ekBaY0Uk09MxgvXv4D92/Y75RuGuRd3yzbvQ7CUC3/M\n4KVLr6Kz8yJiY9+2eg6tVottH29DXkke6lrq0IUuyCBDqH8o5iQ7zufO8j4EEwTMtqDL6CB1uUO2\nuSEwgxMn5iMiYiVCQxeLXYrdcUOwL0ddRketS0i8U5nZTK/XorHxMBSKVLFLYYyJhBsCAwC0tHwP\nb+/R8PQcJnYpjDGRcENgACw73JQx5pq4ITAAPRe0G/j6RYwx18YNgUGv70RTUzEUilvELoUxJiJu\nCAxNTaXw9b0BMplC7FIYYyLihsDM+vwDxpjr44bAuCEwxgBwQ3B7Ol07mpu/Q2DgLLFLYYyJjBuC\nm2tq+hZ+fpMgkznntVcYY8LhhuDmeHMRY6wHNwQ3xw2BMdaDG4Ib0+la0dJyDIGBN4tdCmPMAQje\nECorK3HrrbdiwoQJmDhxIv785z/3GaNSqRAYGIikpCQkJSVhw4YNQpfBzNDYeBj+/kmQSq35jED3\nw9lmrk4m9ISenp544403kJiYiJaWFkydOhVz585FXFyc0bjU1FTk5OQI/fLMAmp1Pm8usgBnm7k6\nwdcQhg8fjsTERACAv78/4uLicPny5T7jXP2a5M6goaEAQUF8/SJzcbaZqxN8DaG3CxcuoKysDMnJ\nyUb3SyQSHDlyBAkJCYiMjMRrr72G+Pj4Ps/PysoyfK9UKqF0xE8qc1JdXU1oazuJgIAZYpcyJFQq\nFVQqlWDzcbYHJ5FIxC7BJEetyyGQnTQ3N9PUqVNp9+7dfR5ramqi1tZWIiLKzc2l2NjYPmPsWBoj\novr6L6ms7FaxyxCNLfnibA/OHZbRUdnys7fLUUZarRaLFy/GsmXLsGjRoj6Py+Vy+Pp278icN28e\ntFotrl69ao9SWD/4cFPrcLaZKxO8IRARVq5cifj4eKxZs8bkmNraWsN21tLSUhARgoODhS6FDaB7\n/wE3BEtwtpmrE3wfwuHDh7F9+3ZMnjwZSUlJAIAXX3wRly5dAgBkZmZi165d2Lx5M2QyGXx9fbFz\n506hy2AD0Gqvor39DOTy6WKX4lQ428zVSYgc85AIiUTCR2vYSX3956iu3oyEhK/FLkU0YubLHbLt\nDsvoqGz52fOZym6INxcxxkzhhuCGeIcyY8wUbghuRqOpQ0fHRcjlU8UuhTHmYLghuJnGxoMIDEyB\nRGLXcxIZY06IG4KbaWjI5/0HjDGTuCG4me79B3z9IsZYX9wQ3EhnZw00mlr4+yeIXQpjzAFxQ3Aj\narUKCsUtkEikYpfCGHNA3BDcCB9uyhgbCDcEN8INgTE2EG4IbqKjoxJdXWr4+U0UuxTGmIPihuAm\nutcOlJBI+FfOGDONz05yUlqtFtk7s/FNyTe40noFOugghRRhfmGYM2MOMpZkwNPT0zCeNxcxZ2Fp\ntplw+GqnTkaj0WDT5k3YUbgD5aHl0IXrjNfz9IC0Vor4K/FIV6bjiYeegJeXF4qLR2PSpL3w84vr\nd253wlc7tS9rltHabDNjtuSLG4ITaW5uRtrKNBSFF0E3TDfoeGmdFCl1Kdj1zl9w5sxvcNNNl/nz\nZH/FDcG+LF1Ga7O95+97IJfLbSnV5XBDcAPNzc2Yu3wuSq4vAXwteGIr8LDXGDz4u6lISPjUbvU5\nG24I9mXJMtqS7eSzyTjwwQFuCr3w5yG4OI1Gg7SVaZa/YQDADwiIO4/s3ceh0WjsUh9j1rI12yUx\nJUhbmcbZFgg3BCewafMmFIUXWf6G+VXSMGBXxzlseneTsIUxZiNbsw0/oCisiLMtEG4IDk6r1WJH\n4Q6ztquaEuUDEAGXfPTYodoBrVYrcIWMWcfWbPfQheo42wIZsCE0NTXh3Llzfe4/ceJEv8+prKzE\nrbfeigkTJmDixIn485//bHLc6tWrERsbi4SEBJSVlVlYtvvY9vE2lIeWW/38RAVQpu7+vjysHNs+\n3iZQZc6rqanJ5P0D5RrgbAvN1mz3xtkWRr8N4ZNPPsH48eOxePFiTJgwAaWlpYbHVqxY0e+Enp6e\neOONN3Dy5EkUFxfjnXfewalTp4zG5Obm4uzZs6ioqMB7772HVatWCbAorimvOK/78DsrJSmAY782\nBF24DnkleQJV5px6cg3AolwDnG2h2Zrt3jjbwui3Ifzf//0fvv/+exw7dgxbt27F8uXL8a9//WvQ\nCYcPH47ExEQAgL+/P+Li4nD58mWjMTk5OYY3X3JyMtRqNWpra21ZDpd1pfWKTRv2eq8hwAOoa6kT\npC5n1ZNrABblGuBsC83WbBvhbAui3zOVdTodIiIiAADTp09HQUEBFixYgMrKSrMnv3DhAsrKypCc\nnGx0f3V1NaKjow23o6KiUFVVhfDwcKNxWVlZhu+VSiWUSqXZr+0qdLD+P6hRvkCnDqjt/M99XegS\noCrno1KpoFKpUFNTgy1btgCwPtcAZ1sItmTbFHfPthD6bQgBAQE4d+4cxo0bBwCIiIhAQUEB7rrr\nLpw8eXLrJxZnAAAWpklEQVTQiVtaWnD33Xfjrbfegr+/f5/Hrz1O1tQJU73fNO5KCus/uyCp99rB\nr2RuerWSnj+6+/fvR0ZGBtavXw/A8lwDnG2h2JJtU9w92z16sm2NflfY/vrXv0Kv16O8/D87fQIC\nArBv3z784x//GHBSrVaLxYsXY9myZVi0aFGfxyMjI43+I6uqqkJkZKQ19bu8ML8wQG/dc/s0BD0Q\n6h8qSF3OqifXvZmba4CzLSRbst0HZ1sQ/TaExMRExMbG4ve//z02btwIIkJbWxv+93//F++8806/\nExIRVq5cifj4eKxZs8bkmIULFyI7OxsAUFxcDIVC0WeVmnWbM2MOpLWW/yclAZDQa4cy0H0dmDnJ\nc4Qrzgn15BqARbkGONtCszbbpnC2hTHopStaW1uxdu1aHD16FC0tLbjnnnvw1FNPwcPDdC8pKirC\nLbfcgsmTJxtWlV988UVcunQJAJCZmQkAeOSRR7Bv3z74+flh69atmDJlinFhbnB6vzm0Wi2mLp2K\nHyf/aNHzxvkB6+KB5d/9575Jxyfh+4+/5ytFojtfDz/8sNm5BjjbljBnGa3Ntimc7f+wJV+DbnST\nyWTw8fFBe3s7Ojo6MHbs2AHfNCkpKX1WyU15++23LavUTXl6eiI9NR3lZ8qhCzV/J1zitWsHdVKk\nK9P5DdOLJbkGONtCszbb1+JsC2fQg76mT58Ob29vHD16FIcOHcJHH32E3/3ud0NRG/vVEw89gZQr\nKUCb+c8x2n/QCqTUpeCJh56wS33OinMtPmuybYSzLahBNxl99913uPHGG43uy87OxvLly+1bmBus\nVluiubkZc1fMRUns4BcB8wDw+UxgxXdAg5qvCGmKqXwNRa77e21XY/HVTs3MthG+2qlJfPlrN2Hu\nNeOv9weeGg88uJevGd8fvvy1ffHnIYiHG4Ib0Wg0eP3d1/GR6iOUh5n+VKmlQRLEeQTDE0/wp0r1\ngxuCfVn7iWmDZVtaK8WEuglYmrqUs90PbghuSKvVYtvH25BXkoe6ljp0oQsyyBDqH4pl8/+NpMQ/\nIiJiidhlOixuCPZlyzIOlO05yfyZyoPhhsAM9HotDh8ehhkzzsHTc5jY5Tgsbgj25Q7L6Kj4E9OY\nQUvL9/D2Hs3NgDFmMW4ILqahIR9BQbeKXQZjzAlxQ3AxanUBFIrbxC6DMeaEuCG4EL2+E01NxVAo\nbhG7FMaYE+KG4EKamkrh63sDZDKF2KUwxpwQNwQX0r25iPcfMMasww3BhXBDYIzZghuCi9Dp2tHc\n/B0CA2eJXQpjzElxQ3ARTU3fws9vEmQyvq4LY8w63BBcBG8uYozZihuCi+CGwBizFTcEF6DTtaKl\n5RgCA28WuxTGmBPjhuACGhsPw98/CVKpJZ8uwhhjxuzSEO6//36Eh4dj0qRJJh9XqVQIDAxEUlIS\nkpKSsGHDBnuU4TZ4c9HQ4FwzV2eXhnDfffdh3759A45JTU1FWVkZysrK8Oyzz9qjDLfRfUE7vn6R\nvXGumauzS0OYNWsWgoKCBhzD10oXRldXE9raTiIgYIbYpbg8zjVzdTIxXlQikeDIkSNISEhAZGQk\nXnvtNcTHx/cZl5WVZfheqVRCqVQOXZFOorHxEOTy6fDw8Ba7FIemUqmgUqns+hrm5hrgbDPhCJlt\nu31i2oULF5CWloYff/yxz2PNzc2QSqXw9fXF3r178dhjj+HMmTPGhfEnLpnl3Lk/QCoNxOjRz4ld\nilOxNl+25tqW13Ym7rCMjsrpPjFNLpfD17f7iJh58+ZBq9Xi6tWrYpTi9BoaCvgDcRwE55o5O1Ea\nQm1traGDlZaWgogQHBwsRilOTattQHv7Gcjl08UuhYFzzZyfXfYhpKen4+DBg6ivr0d0dDTWr18P\nrVYLAMjMzMSuXbuwefNmyGQy+Pr6YufOnfYow+U1Nh5EQMBMeHh4iV2KW+BcM1dnt30ItuJtkIOr\nqHgM110XgZEjnxK7FKcjZr7cIdvusIyOyun2ITBh8AlpjDEhcUNwUhpNHTo6LkIunyp2KYwxF8EN\nwUk1Nh5EYGAKJBJRTiVhjLkgbghOig83ZYwJjRuCk1Kr86FQ8PWLGGPC4YbghDo7a6DR1MLfP0Hs\nUhhjLoQbghNSq1VQKG6BRCIVuxTGmAvhhuCE+HBTxpg9cENwQtwQGGP2wA3ByXR0VKKrSw0/v4li\nl8IYczHcEJxM99qBEhIJ/+oYY8LivypOhjcXMcbshU9ztZRKBYj46VZqdQGio5+EVqtF9s5sfFPy\nDa60XoEOOkghRZhfGObMmIOMJRnw9PQUrU7mhETOdg/Otnj4aqeWysrq/hJBe/t5/PDDTBQefRQ7\nCneiPLQcunCd8XqeHpDWShF/JR7pynQ88dAT8PLiy2Nfi692aoKA2bZmGTUaDTZt3oQdhTs42zaw\nJV+8huBEfv55L34o1+G5s3+CbrLO9CAPQBehw48RP6L8TDm+zvgae/6+B3K5fGiLZcwCzc3NSFuZ\nhqLwIs62iHgfgpNobm7G7n1/wv7OOuiG9fOGuYYuVIeDow5i7oq5aG5utnOFjFmnubkZc5fPxcEx\nBznbIuOG4AQ0Gg3SVi5A9Jhf8EOrhU/2A0piSpC2Mg0ajcYu9TFmre5sp6Hk+hLA18Inc7YFxw3B\nCWzavAnnxxWBAFzusGICP6AorAib3t0kdGmM2WTT5k0oCi+yvBn04GwLihuCg9NqtdhRuAOTx+hR\nprZ+Hl2oDjtUOwyfAcyY2Hqybe5mov5wtoUjeEO4//77ER4ejkmTJvU7ZvXq1YiNjUVCQgLKysqE\nLsGlbPt4G8pDy5GkAI7Z0BAAoDysHNs+3iZMYW6Isy2snmwLgbMtDMEbwn333Yd9+/b1+3hubi7O\nnj2LiooKvPfee1i1apXQJbiUvOI86MJ1SFTApjUEANCF65BXkidMYW6Isy2snmwLgbMtDMEbwqxZ\nsxAUFNTv4zk5OVixYgUAIDk5GWq1GrW1tUKX4TKutF7BKH+gUwfUdto4mQdQ11InSF3uiLMtrCut\nV4T7C8TZFsSQn4dQXV2N6Ohow+2oqChUVVUhPDy8z9isXifJKJVKKO15FqVK1f01mPXrzZtPqRTk\nrE8dhFk76NGFLmEmcjIqlQoqc36/NuBsW0YHYdYOenC2bSfKiWnXnkUnkUhMjssayjOCLQn5ENYl\nhRRTFMChemHmk7npuYjX/tFdb+4fPwtxts0nhbAf8MTZ7mZLtof8KKPIyEhUVlYabldVVSEyMnKo\ny3AaYX6hSAi0fYcyAEAPhPqHCjARM4WzbZkwvzBAL9BknG1BDHlDWLhwIbKzswEAxcXFUCgUJlep\nWbf5s8ajuQOoF+C8G2mtFHOS59g+ETOJs22ZOTPmQForzFoCZ1sYgq9jpaen4+DBg6ivr0d0dDTW\nr19vOD44MzMT8+fPR25uLmJiYuDn54etW7cKXYJLmTXDH9v3BAO4avNc8VfikbEkw/ai3BRnW1gZ\nSzLw5u438WPEjzbPxdkWhuANYceOHYOOefvtt4V+WZfV1FSIUPlcSE/vgi7U+p1w0jop0pXpfNlg\nG3C2heXp6Yn01HSUnynnbDsIPlPZgRHp0NhYiHsWv4KUKylAm5UTtQIpdSl44qEnBK2PMVs98dAT\nnG0Hwg3BgbW0lMHLawT8/Udizz/2ILki2fI3TiuQfDYZe/6+h68dzxyOl5cXZ9uBcENwYA0NBQgK\n6v64TLlcjgMfHEDq+VRI683bESetkyL1YioOfHCArxnPHBZn23FwQ3Bg135+slwux/7t+7EhdgMm\nHZ8EaY2072F7ekBaI8XkE5PxwvUvYP+2/fyGYQ6Ps+0Y+CM0LTVEnzur12tx+PAwzJhxDp6ew/o8\nrtVqse3jbcgryUNdSx260AUZZAj1D8WcZP7c2cHwR2iaIGC2bVlGzrZtbPnZc0NwUE1Nxfjpp0zc\neONxsUtxSdwQ7MsdltFR2fKz501GDqr3/gPGGBsK3BAclFqdD4XiNrHLYIy5EW4IDkiv70RTUzEU\nilvELoUx5ka4ITigpqZS+PreAJlMIXYpjDE3wg3BAV17uCljjA0FbggOiBsCY0wM3BAcjE7Xjubm\n7xAYOEvsUhhjboYbgoNpavoWfn6TIJPxGZiMsaHFDcHB8OYixphYuCE4GG4IjDGxcENwIDpdK1pa\njiEw8GaxS2GMuSFuCA6ksfEw/P2TIJX6il0KY8wNcUNwILy5iDEmJrs0hH379mH8+PGIjY3Fxo0b\n+zyuUqkQGBiIpKQkJCUlYcOGDfYow+mo1QUICuLrFzkyzjZzZTKhJ9TpdHjkkUeQl5eHyMhI3Hjj\njVi4cCHi4uKMxqWmpiInJ0fol3daXV1NaG39NwICZohdCusHZ5u5OsHXEEpLSxETE4PRo0fD09MT\nS5cuxRdffNFnHF8r3Vhj4yHI5dPh4eEtdimsH5xt5uoEX0Oorq5GdHS04XZUVBRKSkqMxkgkEhw5\ncgQJCQmIjIzEa6+9hvj4+D5zZWVlGb5XKpVQDsEnlYmF9x/Yl0qlgkqlsmkOzjZzREJku4fgDUEi\nkQw6ZsqUKaisrISvry/27t2LRYsW4cyZM33G9X7TuLqGhgLExr4ldhku69o/uuvXr7d4Ds42c0RC\nZLuH4JuMIiMjUVlZabhdWVmJqKgoozFyuRy+vt2HVs6bNw9arRZXr14VuhSnodU2oL39DOTy6WKX\nwgbA2WauTvCGMG3aNFRUVODChQvQaDT4+OOPsXDhQqMxtbW1hu2spaWlICIEBwcLXYrTaGwsREDA\nTHh4eIldChsAZ5u5OsE3GclkMrz99tu4/fbbodPpsHLlSsTFxWHLli0AgMzMTOzatQubN2+GTCaD\nr68vdu7cKXQZTqWhIZ8/P9kJcLaZq5OQgx4SIZFI3OZoje++m4wbbvgbAgKSxS7FbYiZL3fItjss\no6Oy5WfPZyqLTKOpQ0fHRcjlU8UuhTHm5rghiKyx8SACA1MgkQi+9Y4xxizCDUFkDQ0FvP+AMeYQ\nuCGIrPuENL5+EWNMfNwQRNTZWQON5mf4+yeIXQpjjHFDEJNarYJCcQskEqnYpTDGGDcEMfH1ixhj\njoQbgoi4ITDGHAk3BJF0dlahq0sNP7+JYpfCGGMAuCGIpqGhAAqFEhIJ/woYY46B/xqJRK3O581F\njDGHwg1BJLz/gDHmaLghiKC9/Tz0+k74+o4XuxTGGDPghiCC7rUDpVmfwMUYY0OFG4IIeHMRY8wR\ncUMYYkQEtboAQUF8/SLGmGPhhjDE2tsrAEjg7T1O7FIYY8wIN4Qh1rO5iPcfMMYcjVs0BJVK5TBz\n9d5/4Eh1udtcrsIdfr6OuoyOOpct7NIQ9u3bh/HjxyM2NhYbN240OWb16tWIjY1FQkICysrK7FGG\ngaP84rr3H6gMH4jjKHW541zW4mwPPUddRkedyxaCNwSdTodHHnkE+/btQ3l5OXbs2IFTp04ZjcnN\nzcXZs2dRUVGB9957D6tWrRK6DIfU1nYKHh4+8PYeLXYpzAqcbebqBG8IpaWliImJwejRo+Hp6Yml\nS5fiiy++MBqTk5ODFStWAACSk5OhVqtRW1srdCkOhw83dW6cbebySGCffvopPfDAA4bb27Zto0ce\necRozIIFC+jw4cOG27Nnz6ajR48ajQHAX/xl1y/ONn+56pe1ZBCYuUfPdL8v+n/etY8zJjbONnN1\ngm8yioyMRGVlpeF2ZWUloqKiBhxTVVWFyMhIoUthTFCcbebqBG8I06ZNQ0VFBS5cuACNRoOPP/4Y\nCxcuNBqzcOFCZGdnAwCKi4uhUCgQHh4udCmMCYqzzVyd4JuMZDIZ3n77bdx+++3Q6XRYuXIl4uLi\nsGXLFgBAZmYm5s+fj9zcXMTExMDPzw9bt24VugzGBMfZZi7P6r0PAtm7dy/dcMMNFBMTQy+//LLJ\nMY8++ijFxMTQ5MmT6YcffrB6roKCAgoICKDExERKTEykF154weQ89913H4WFhdHEiRP7fS1zazJn\nPnPrunTpEimVSoqPj6cJEybQW2+9ZXVt5sxlbl3t7e00ffp0SkhIoLi4OHrqqaesrsucucytq0dX\nVxclJibSggULrK7LGq6ebaFyTcTZtrSuHkJnW9SG0NXVRePGjaPz58+TRqOhhIQEKi8vNxrz1Vdf\n0bx584iIqLi4mJKTk62eq6CggNLS0gatq7CwkH744Yd+g25uTebOZ25dNTU1VFZWRkREzc3NdP31\n11v98zJnLnPrIiJqbW0lIiKtVkvJycl06NAhq+oyZy5L6iIi2rRpE91zzz0mn2Pp79Jc7pBtoXJN\nxNm2pi4i4bMt6qUrhDyu25y5APOO8Jg1axaCgoL6fdzSY80Hm8/cuoYPH47ExEQAgL+/P+Li4nD5\n8mWrajNnLnPrAgBfX18AgEajgU6nQ3BwsFV1mTOXJXVVVVUhNzcXDzzwgMnn2Ou8AXfItlC5Bjjb\n1tRlj2yL2hCqq6sRHR1tuB0VFYXq6upBx1RVVVk1l0QiwZEjR5CQkID58+ejvLxcsLpN1WQua+q6\ncOECysrKkJycbHNt/c1lSV16vR6JiYkIDw/Hrbfeivj4eKvrGmwuS+p6/PHH8eqrr8LDw3TUhf5d\nDjSvu2Xb2po42+JlW9SGINRx3ebONWXKFFRWVuL48eN49NFHsWjRIvMKtbImc1laV0tLC+6++268\n9dZb8Pf3t6m2geaypC4PDw8cO3YMVVVVKCwsNHltFnPrGmwuc+v68ssvERYWhqSkpAH/6xLyd2np\nHK6cbWtq4myLm21RG4KQx3WbM5dcLjesss2bNw9arRZXr161uW5bjzW3pC6tVovFixdj2bJlJsNi\nSW2DzWXNzyswMBB33nknjh49anVdg81lbl1HjhxBTk4OxowZg/T0dOTn52P58uU212UOzrblNXG2\nHSDbZu+9sAOtVktjx46l8+fPU2dn56A73r799tt+d4yYM9fPP/9Mer2eiIhKSkpo1KhR/dZ2/vx5\ns3a8DVSTufOZW5der6eMjAxas2ZNv69jbm3mzGVuXXV1ddTQ0EBERG1tbTRr1izKy8uzqi5z5rLk\n99hDpVKZPBLDmt+lOdwl20LkmoizbWldvQmZbcHPQ7CEkMd1mzPXrl27sHnzZshkMvj6+mLnzp0m\n50pPT8fBgwdRX1+P6OhorF+/Hlqt1uKazJ3P3LoOHz6M7du3Y/LkyUhKSgIAvPjii7h06ZLFtZkz\nl7l11dTUYMWKFdDr9dDr9cjIyMDs2bOt+j2aM5e5dV2rZ3V5KM4bcIdsC5VrgLNtzc+sN6GyLSHi\nC6swxhhzk09MY4wxNjhuCIwxxgBwQ2CMMfYrbgiMMcYAcENwKXfccQeCgoKQlpYmdimMCYqzPTS4\nIbiQJ598Etu2bRO7DMYEx9keGtwQnNB3332HhIQEdHZ2orW1FRMnTkR5eTluu+02k6f7M+YsONvi\nEvXENGadG2+8EQsXLsSzzz6L9vZ2ZGRk9LlIFmPOiLMtLm4ITupPf/oTpk2bBh8fH/zlL38RuxzG\nBMPZFg9vMnJS9fX1aG1tRUtLC9rb2w33C3GlTsbExNkWDzcEJ5WZmYkNGzbgnnvuwdq1aw3385VI\nmLPjbIuHNxk5oezsbFx33XVYunQp9Ho9Zs6ciYKCAqxbtw6nT59GS0sLoqOj8c9//hNz584Vu1zG\nzMbZFhdf3I4xxhgA3mTEGGPsV9wQGGOMAeCGwBhj7FfcEBhjjAHghsAYY+xX3BAYY4wBAP4fiRgf\nvsFgsd4AAAAASUVORK5CYII=\n"
}
],
"prompt_number": 34
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is compared to the classifier generated by the Decision Trees. We see that the point (2,2) is misclassified by the ensemble classifier. However, it is expected that as the number of iterations of ADABoost will increase our classifier will improve. This is based on the fact that there is no noise in the dataset. To further illustrate this, we can see the reduction in error with iteration count."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from matplotlib import rc\n",
"rc('text', usetex=True)\n",
"rc('font', family='serif')\n",
"rc('font', size=12)\n",
"epsilon_vector=np.array([.1667,epsilon_2,epsilon_3])\n",
"iteration_vector=np.array([1,2,3])\n",
"plt.plot(iteration_vector,epsilon_vector)\n",
"plt.title(r'Error in $\\epsilon_t$ vs iteration t')\n",
"plt.xlabel(r\"Iteration (t)\");\n",
"plt.ylabel(r'$\\epsilon_t$');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0I1d9B/DvKJSktNgjGThJoKdryeRBTosly3lCV11Z\nIi9Iuoq1LRzydqw/WgrnZG0n9DTrtsna8jk90Aes7TQQoIeuLQEphYT1yCgJISS7ltI0kAerUUoh\n2UCsHW1p84Dd6R/TGUuWZMv2yDOSvp9z9sQzujNzNXb009x7f/cKqqqqICIiqsJhdQWIiMi+GCSI\niKgmBgkiIqqJQYKIiGpikKAyMzMz6OnpgcPhgMPhQDgcRjgcLttnB4lEAj09PVZXY0vs+h7sWi+y\nhj3+jyfbuO2227C0tAQAGB4exqFDh3Do0CEcPXoU09PTEATB4hpqPB4PBgcHra7GltR6D9FodNvq\nUO1a23Fvt/M90ta8xeoKkP10dnYCAERRLNs/NDSEyclJnDhxAh0dHVZUzeD1euH1ei2tw1ZVew+y\nLEOW5W25fq1rNfrebud7pK3jkwStS5ZlzM7OAgAGBgawvLxscY1a1+joaEteyw7Xpc1hkKB1TU9P\nI5fLAQAmJyfR3d2N0dFROJ1O9PT0IJvNYnh4GH19fRgbG6vY7/f7AWjBZnBwENFoFOFwGNlsFgCq\nnks/phq9fGn/yMzMjHGO2dlZ9PT0wOVyGcHNLKOjo3A4HOjp6cHi4iLy+Tz6+vrgcDjwta99DQAQ\nj8cRjUYRi8UQjUYxNjZW13uIx+PIZrOQZbniOEVRNnzvMpmMcUxPTw9isdi616pWL6D2726j932t\n90g2pRJVIQiC6vF4VI/HowqCoI6NjVWUGR0dVT0ejzo7O6smEgnV4XCoxWKx6n5FUVS3263Ozs6q\nqqqqkiSpgiCoxWJxzXPVMjMzowqCUFGf0rrqZfL5fM3zTE9Pq/F4XJ2ZmVEVRanr3gwODqrhcNjY\njsfjajKZVFVVVY8fP6729fWVvVbt3tV6D8PDw6rf768o63a71ampKVVVVTWTyax77xRFUUVRNI5R\nVe13mkgk1r1WtXqt97vbyH2vdV2yJz5JUE2Dg4M4evQoRkZGoFaZvUVVVciyjIGBAUQiEZw8eRId\nHR1V9y8sLCCfzxsdlsFgEID2lLLWuWqpVh+XywUA2L9/v1F/ADXbv+PxOARBwN69ezE0NGT0xaxn\neHgYCwsLePHFFwEACwsL2L17t/F6JpNBLBaDJEm47bbbanbS1rqnq/dLkoR8Po9IJAIARn/BwYMH\njWNW37vOzk58+tOfNsoqigJRFHH8+PE1r1WtXolEYs3f3Ubve63rkj0xSNC69uzZY4xqkiSprClB\nEATs2LGj4pjV+/UPjNIPflEUyz5Iap1rI0o72/WfFUWpWnZsbAzFYhGzs7NIpVLG/nw+v2YzVTAY\nhNvtxsTEBLLZLPr6+squOT8/D0mSEA6H4XQ6ceTIkS29p0wmA0BrCopGo4hGo/B4PCgWi0aZavfu\n1ltvxfz8PGKxGCYmJqAoSs17sZZ6fncbue/UXDi6idZVOtplfn4eH/rQh4zX3G531WNW7/d4PACA\nYrFofGNXFMXYv9a5NkL/VrueTCYDn8+H22+/veK1hYUF9Pf3r3n86OgohoeHUSgUcO+99xr79bb6\no0eP4sUXX8SBAwcwPDyMoaGhuupV+mGbSCTgdDqNe3TvvffWfLpafe8URYHL5UIikTCecuLx+LrX\n0p8SStXzu6v3vm/kumQPfJKgCvo3wNKmCUD78JydnS37n7xWs8Hq/ZFIBKIoYm5uDoD2RCIIAm67\n7bZ1z7VV1c7r8/mqls1kMpiZmUE+ny/7pr6a3vRSLBbLPriXl5cxOjqKYrGIHTt2YGxsrOzDdD3v\neMc7jG/okiTB4/FgYGAAoijinnvuMcrF43Ekk8ma71F/eunu7gagdTADwKuvvrrmtaqp53dXTa3f\nZ73XJZvY3i4Qsrvp6WnV4/GoDodDdTgcaigUUkOhkNGB7XA41Gw2qyYSCaNcLBYzOn3n5+er7ldV\nVZVlWQ2FQurg4KAaCoXUbDa77jHVlF47Go3WPMd1112nOhwO1e/3q5lMpuI8kiSp8XhcTSQSZR26\ng4ODdd2r4eFhNZVKVZxzcHDQ+Ff6Ptd7D6qqqoqiqB6PR3U6nWWdzvq983g8al9fn9GJvNa9C4VC\nqtPpVEOhkDo7O6vG43HV6XQax1a7Vun5Suu1kd/deve91nskexJUlT1IRDpFUTA2NoYDBw5YXRUi\nW2CQICqRSqWgKArcbnfTZ3QTmYF9EkQl3G43CoUCCoWC1VUhsgU+SRARUU2mD4HVh7TpyTvVhrYl\nk0mIomgMNdSThGrtJyIia5j6JCHLMuLxuNHpFw6HcejQobIy2WwWhULBCB49PT1YWlpCLpfD8ePH\nK/bXmwVLRETmM7VPQpKkisxLPblIJ8syFhYWysrIsox8Pl+xP5/Pm1k9IiLaIFOfJKampgAAe/fu\nBQDEYjGEQqGazUb6KJLVnYS19ttlwRsiomaz2Y/6ho9uWuuDfWxszJiXpp79wMrkYPy39X933XWX\n5XVolX+8l7yfdv63FaYGidUrmRUKhZrz8SSTScRisYpJyWrtJyKi7WdqkIhGo8biNIDWbNTb21tR\nTpIk+Hw+9Pb2QlEUo++h1n4iIrKGqUNgOzs7MTg4aEy7XLrqlN/vx+LiIo4ePYpYLGY8deTzeSwv\nLxtz8K/eT40TCASsrkLL4L00F++nfTRVMp0gCFtuXyMiajdb+ezktBxERFQTgwQREdXEIEFERDUx\nSBARUU0MEkREVBODBBER1cQgQURENTFIEBFRTQwSRERUE4MEERHVxCBBREQ1MUgQEVFNDBJERFQT\ngwQREdXEIEFERDUxSBARUU2mrkwHAIlEAk6nE4qiQBRFBIPBijLJZBKiKGJhYQH9/f2IRCJ1H0tE\nRNvH1CAhyzIkScKBAwcAAOFwuOKDPpvNGgEgGAyip6cHAwMDWF5eXvdYIiLaXqYGCUmSjDWqAUAU\nRWSzWXi9XmOfLMs4fPiwEQBEUTT2rXcsAOzbt8/4ORAIcC1csgVVBU6eBN5i+rM50cal02mk02lT\nzmXqn3SxWERXV5ex7XK5IMty2Qd9JBIxmpcURUE+n4fX64UkSeseC5QHCSKrqCqQywEPPwyk09p/\nX3sNeOQR4Pzzra4dtbvVX6DHx8c3fa6Gf+8RBKHma2NjY1haWtrUsUTbSVWBF15YCQgPPwwIArBz\np/bvL/4CeOIJ4PLLgcceA97zHqtrTGQOU4OEKIpQFMXYLhQKcLvdVcsmk0nEYjHs2LFjw8cSNZqq\nAj/60UpAePhh4PTTtYAQDAJ//deA260FCt255wLHjgFXXKE9UTid1tWfyCymBoloNIrR0VFjW1EU\n9Pb2VpSTJAk+nw/d3d1QFAXHjx+v+1iiRjh1CnjmmfKg8Pa3a0HhyiuByUng/7/PrGnvXuDll4Fr\nrgEOHQLOOKPhVSdqKEFVVdXME6ZSqZWTCwJ27doFAPD7/VhcXMTRo0cRjUaNTup8Po/l5eU1jy3d\nZ3J1qU2dPAk8/fRKn8KjjwIuFxAIrDQh/c7vbO7cp04BH/sY8OabwNwccNppZtacaOO28tlpepBo\nJAYJ2qxf/xp46qmVPoXvfQ8488yVgLBzJ3D22eZd7403gKuuAt77XuBznytvliLabgwSRKv86lfA\n0tJK09Fjj2lPBnpA+IM/0IJEI504oV0rEtE6tomswiBBbe/NN4HDh1eCwuOPA93d2od0IAB88IPA\nO9+5/fU6dgy47DLgjjuAW2/d/usTAQwS1IZefx148smVPoUnn9SadvQ+hQ9+UOtjsIMf/1h7cpme\nBj7yEatrQ+2IQYJa3muvAT/4wUqfwpEjwPvet9J89IEPACUJ+7Zz+LA2SuqBB4BLL7W6NtRuGCSo\n5fzP/wDf//5K81E2C/ze760EhcsuAzo6rK7lxjz0EHDDDVqgY1Y2bScGCWp6//3fWueyHhSefhro\n7V0JCpdeCvz2b1tdy6378pe1Tuzvfx9497utrg21CwYJajrFojYMVQ8KP/wh0Ne30qdw8cXA295m\ndS0bIx7XggWzsmm7MEiQ7R0/riWs6R3NL7wAXHjhypPCRRe1T3ayqgKf+hSQyTArm7YHgwTZzvKy\n9k1Z72iWZe3pQA8K/f3aXEjt6tQp4KMf1fI5mJVNjcYgQZb7+c/L5z36yU+0fgQ9T6GvD/iN37C6\nlvaiZ2Wfcw7wj//IrGxqHAYJ2nYvv1weFF56SRuGqvcpeL1cgKcezMqm7bCVz07+b0x1+elPVwJC\nOg28+qqWILZzJzA0BLz//Wwy2YyODuDBB7WnrjPPZFY22Q+fJKiq//zP8lXXTpxYCQo7d2o5Cw6H\n1bVsHS+8oN3XmRngwx+2ujbUatjcRFuiqkA+X77q2muvlc+Q+r73MSg0GrOyqVFsFSQSiQScTicU\nRYEoiggGg1XLZTIZLC0tYWhoyNiXSqWM1emqHcsgYQ5V1eYTKu1TOHlypZN5505tlTV2pG6/hx4C\nbrwR+O53mZVN5rFNn4Qsy5AkCQcOHAAAhMPhqkEilUphenoa/f39xr5isQhZlo2gMTU1VTPA0Mao\nKvDcc+VB4bTTtIAQCAB33QX09DAo2MHll2vJdpdfzqxssgdTg4QkScaKc4D2NJDNZuH1esvKBYNB\nyLJctqa1qqqYnp7GwMAAuru7jdXqaONOnapcn/ltb9OeEMJh4O67tWm0GRTs6frrtSnGL79cS0C0\n88SF1PpMDRLFYhFdXV3GtsvlgizLFUGiGlEUMTk5ib6+Pvj9fhw6dMjMqrW0U6eA//iPlT6FRx7R\nPlh27gSuvhqYmgJ+93etriVtxN692rDia64BvvMdZmWTdRo+BFbYwNdVWZaRyWQwMjICv9+PI0eO\nVJTZt2+f8XMgEEAgEDChls3l5EltKU79KeHRR7UFdfTx9n/3d8B73mN1LWkrBAH427/VsrI/9jFm\nZdPGpNNppNNpU85lapAQRbGsCalQKMDtdtd1bDKZhN/vx44dOzA3N4exsTGkUqmKfonSINEufv1r\nbZ6f0qU4zzpL60/46EeBAwe0bWotDgdw//3aiKdPfAL4h39gEyHVZ/UX6PHx8U2fy9RBjdFoFLlc\nzthWFAW9vb1Vy67uaS8UCmX9GaFQqO4A02p+9Stt+c2JCeCKK4CuLi3J6ic/0Ua+PP+81ufwuc8B\ne/YwQLSy008Hvv51rRP77rutrg21I9OHwKZSqZWTCwJ27doFAPD7/VhcXERHR4cxuqlYLGJkZMR4\nWpidnYXL5TKeQNplCOwbb6ysz5xOA088AXg8KzkKH/wg8I53WF1LstKxY1ruxJ13MiubNs5WeRKN\n1CpB4vXXtaU49eajw4e1vAQ9T+EDH+A6A1SJWdm0WQwSNve//6s1H+lBYWkJuOCClcS1yy4DOjut\nriU1gyef1EasPfAAcMklVteGmgWDhM388pfl6zM/9ZQ2AV7pUpxvf7vVtaRmxaxs2igGCYudOLGy\nPnM6DTzzDODzrQSFSy4Bfuu3rK4ltZIvfQn4y7/U/u6YlU3rYZDYZoqirc+sJ689+6y20poeFC6+\nGPjN37S6ltTqJieBr3yFWdm0PgaJBisUtCxmvfnoxz/W1mTW+xQuvLC9l+Ika+hrZWezzMqmtTFI\nmOwXvygPCvn8ylKcO3cCfj/w1rc2vBpE6+Ja2VQPBokteuWV8snwfvpTbcSRHhR8Pq7PTPb1xhta\nVvZ55zErm6pjkNigl14qX4rzlVe0hDU9T+H97+f6zNRc9JUDBweBT3/a6tqQ3dhmPQm7+q//Kl+K\ns1DQ/ocKBIBYTFuKk4/p1Mz0tbIvu0xbK/uWW6yuEbWKlnySePHF8qU4f/nL8qU4L7iAS3FSa2JW\nNlXT1s1NqgrkcuV9Cm++WR4Uzj+f7bTUPp58ErjqKuBf/5VZ2aRpqyBx6pSKF14oDwrASkAIBID3\nvpdBgdrbgw8CN93ErGzStFWQOPNMFW9960pA2LkTcLsZFIhWY1Y26dqq4/rxx4EdO6yuBZH9XX89\n8PLLXCubtqbpniSaqLpEllNV4JOf1CaZZFZ2+2qr5qYmqi6RLZw6BfzJn2hrox88yOHe7chWQSKR\nSMDpdEJRFIiiWLG6nC6TyWBpaQlDQ0PGPkVRMD8/D7fbDVmWy14DGCSINotZ2e1tK5+dpmYLyLIM\nSZIQDAYRiUQwOTlZtVwqlcLExAQURSnbH41GMTQ0hGAwiIWFBTOrRtTW9LWyH3sMuOceq2tDzcTU\nICFJEsSS3jFRFJHNZivKBYNBhEKhNY+dm5szs2pEbU/Pyv6nfwLuu8/q2lCzMHV0U7FYRFdXl7Ht\ncrkgyzK8Xu+6x8qyDEB7ytCfMCKRiJnVI2p7Z52lrWy3cyfwrndpS6ESraXhQ2CFOhs/9cCg92GE\nw2H4fD50d3eXldu3b5/xcyAQQCAQMKWeRO3inHO0NbKZld260uk00um0KecyNUiIoljWz1AoFOB2\nu+s61uPxoFAolJ0rm82uGSSIaHMuvFBLtvujP9LmOTvvPKtrRGZa/QV6fHx80+cytU8iGo0il8sZ\n24qioLe3t2rZ1T3tAwMDRpOTfqzP5zOzekRU4oortCVQL78c+NnPrK4N2ZXpQ2BTqdTKyQUBu3bt\nAgD4/X4sLi6io6MDqVQK09PTKBaLGBkZMZqYksmk8TTR1dWF3bt3l1eWQ2CJTDc5CfzzP2urMTIr\nuzXZKk+ikRgkiMzHrOzWxyBBRFvCrOzWZptkOiJqTg6H1pFdKAB//ufa0wURwCBBRP9Pz8r+3veY\nlU0rmm6qcCJqnM7OlbWyzzoLuPlmq2tEVmOQIKIyzMqmUmxuIqIK55wDfOMb2pPE449bXRuyEoME\nEVV10UXA/fdrWdnPPWd1bcgqDBJEVFNpVvZLL1ldG7IC+ySIaE033LCyVjazstsPk+mIaF16Vva/\n/7vWqc2s7ObCjGsiajhmZTcvZlwTUcMxK7s9MUgQUd1Ks7L377e6NrQd2HFNRBtSmpV95pnMym51\nDBJEtGHMym4fbG4iok3Rs7Jvugn4wQ+srg01iumjmxKJBJxOJxRFgSiKxqpzq2UyGSwtLWFoaKjm\nOVYfy9FNRPbz4INaoOBa2fZlm9FNsixDkiQEg0FEIhFMTk5WLZdKpTAxMQFFUSpeUxQFc3NzVV8j\nIvthVnZrMzVISJIEsSQdUxRFZLPZinLBYBChUKjqOZaWltDf329mtYiowW64AYjFtEDB73etxdQg\nUSwW0dXVZWy7XC7Islz38alUqmbzFBHZ2+goEAgA114LvP661bUhszR8dJMgCHWVy+fzcLvd65bb\nt2+f8XMgEEAgENhkzYjITIIAfOYzWlb2xz8O/Mu/MCvbKul0Gul02pRzmRokRFEs60soFAp1ffAD\nWke2/t/Dhw9jeXkZPp8P3d3dZeVKgwQR2YuelX3FFVpW9t//vRY8aHut/gI9Pj6+6XOZ2twUjUaR\ny+WMbUVR0NvbW7Xs6p72SCRi/HO73ejv768IEERkf8zKbi2mPkl0dnZicHAQqVQKADA2Nma85vf7\nsbi4iI6ODqRSKUiShGKxCJ/PV9YPkclkIEkS8vl81ScJIrI/PSv70ku1xLubbrK6RrRZnAWWiBrm\n+ee1zuzZWWZlW4lThRORbT3xhBYgvvlN4OKLra5Ne7JNMh0R0Wr6WtnXXsu1spsRgwQRNdyVVwIT\nE9qoJ2ZlNxfOAktE2+LGG4Fjx7hWdrNZ90miWCwCAJ566iljO5/PN7ZWRNSSmJXdfNbtuJ6amkIu\nl4MsywiFQvD5fJBluersrY3Gjmui5qevlX3qFLOyt8u2jG7KZDLweDzGJH5WzLHEIEHUGt54Q2t2\nuuACZmVvBw6BJaKmUyxqK9tFo8Cdd1pdm9bWsCGwyWQSAIzpvvVMaiKirdKzsmdngS98weraUC1r\nBgl9mu+NTPdNRFQvfa3sO+4AvvUtq2tD1awZJLxeL8LhMI4cOYJUKmXM1EpEZJZzzwUeeIBrZdvV\nun0SsiwjkUhAEATs3bt3u+pVFfskiFrXt78N3Hwz18puBHZcE1FL+OIXgfFx4LHHgLPPtro2rWMr\nn53MuCYi27jxRuDll7XpOx55ROvcJmvxSYKIbEVVtVXtnn5a69Q+4wyra9T82NxERC3l5EktK1tV\nmZVtBlsFiUQiAafTCUVR1szMzmQyWFpaKpveI5lMQhRFLCwsoL+/H5FIpLyyDBJEbYNZ2eaxzXoS\nsixDkiQEg0FEIhFMTk5WLZdKpTAxMQFFUYx92WzWCCoTExMYHR01JhckovZz+unAN74BPPqoNs04\nWcPUIKHP66QTRdHI1i4VDAYRCoXK9smyjIWFhbJjOdssUXvTs7JnZpiVbRVTRzcVi0V0dXUZ2y6X\nC7Isw+v1rntsJBIxmpcURYEsy+jt7TWzekTUhM4+W+vA3rkTeNe7gKuusrpG7aXhQ2CFTTQkjo2N\n1czu3rdvn/FzIBBAIBDYZM2IqFnoWdkf/rC2VvZFF1ldI3tLp9NIp9OmnMvUICGKYlk/Q6FQgNvt\n3tA5kskkYrEYduzYUfX10iBBRO3joou0JqdrrgEeflgLHFTd6i/Q4+Pjmz6XqX0S0WgUuVzO2FYU\npWaTUbWedkmS4PP50NvbC0VR2CdBRGWuukrrxL78cq6VvV1MHwJbOp24IAjYtWsXAMDv92NxcREd\nHR1IpVKYnp5GsVjEyMgIgsEgMpkMotGo0fGdz+exvLxcXlkOgSUiAPv3a/kTzMquj63yJBqJQYKI\nAC3J7hOfAJ55Rhv9xKzstTFIEFHbYVZ2/WyTTEdEtF1OOw340peAV18FPvlJLViQ+RgkiKhpnXGG\nlpX9yCPMym4UThVORE1Nz8q+7DJtOdQbb7S6Rq2FQYKIml5pVvY738msbDOxuYmIWkLpWtlPPGF1\nbVoHgwQRtYzSrOznn7e6Nq2BQYKIWspVV2nJdszKNgf7JIio5dx0E3DsGNfKNgOT6YioJZVmZT/0\nkLaIUbtixjURURV6VjYAfPWr7ZuVzYxrIqIq9KzsX/yCWdmbxSBBRC2NWdlbw45rImp5zMrePAYJ\nImoLq9fKvvJKq2vUHNjcRERt49xztaanG29kVna9TB/dlEgk4HQ6oSgKRFFEMBisWi6TyWBpaQlD\nQ0N1H8vRTURkhm99C7jllvZZK9s2o5tkWYYkSQgGg4hEIpicnKxaLpVKYWJiAoqibPhYIqKtYlZ2\n/UwNEpIkGWtUA4AoishmsxXlgsEgQqHQpo4lIjLDTTcBQ0Na30SxaHVt7MvUjutisYiuri5j2+Vy\nQZZleL1e047dt2+f8XMgEEAgENhyvYmoPd1xB/Dyy8C117ZWVnY6nUY6nTblXA0f3SQIgqnHlgYJ\nIqKtEATgM58B/viPgY9/XFsr29ECw3lWf4EeHx/f9LlMvR2lzUUAUCgU4Ha7G34sEdFmnXYa8OUv\nMyu7FlODRDQaRS6XM7YVRUFvb2/Vsqt72jdyLBGRmfSs7IcfBjhmppzpQ2BTqdTKyQUBu3btAgD4\n/X4sLi6io6MDqVQK09PTKBaLGBkZMYa61jq2dB+HwBJRo7z0kpaVfdddrZWVzVlgiYhM8vzzWlb2\nffe1Tla2bfIkiIianZ6VfcMNzMoGGCSIiCpcfDHwxS9qQ2Pbfa1sBgkioiquugq45x5mZXMWWCKi\nGm66SUu2u/JKbeRTO66VzY5rIqI1qCrwZ38G/PCHzZuVzdFNREQNdPKklpUtCM2Zlc3RTUREDaRn\nZf/85+2Xlc0gQURUhzPOAB54oP2ystlxTURUJ32t7EsvBc48s7WysmthkCAi2gB9rexAoD3WymZz\nExHRBp13XvtkZTNIEBFtwsUXA1/4gpaV/cILVtemcRgkiIg26eqrtazsD31IS7prReyTICLaAj0r\n+4orWjMrm8l0RERbpGdl/+hH2ugnu2VlM+OaiMhiela2wwF89av2ysq2VZBIJBJwOp1QFAWiKBqr\nztVTJpVKQVEUAKh6LIMEEdnZ669rs8b+/u8Dn/2sNo2HHdhmWg5ZliFJEoLBICKRCCarpCXWKlMs\nFiHLMiKRCCKRCDKZjJlVIyJqOH2t7HQaiMetro05TA0SkiRBFEVjWxRFZLPZusqoqorp6Wnk83kA\nwPLysplVIyLaFqKoJdt9/vPA/fdbXZutM3V0U7FYRFdXl7HtcrkgyzK8Xm9dZSYnJ9HX1we/349D\nhw5Vvca+ffuMnwOBAAKBgJlvgYhoy1ZnZV9xxfZeP51OI51Om3Kuhg+BFepolNPLyLKMTCaDkZER\n+P1+HDlypKJsaZAgIrIrPSv7Ix8BvvlN4KKLtu/aq79Aj4+Pb/pcpjY3lTYjAUChUIDb7V63THd3\nN5LJJPx+P3bs2IG5uTkMDAwglUqZWT0iom118cXAffc1d1a2qUEiGo0il8sZ24qioLe3d90yXq8X\nhUKhLICEQqGKAENE1Gyuvhq4+25t1FMzZmWbPgS29Nu/IAjYtWsXAMDv92NxcREdHR01y8zOzsLl\nchlPIBwCS0St4u67gfl5a7KybZUn0UgMEkTUrKzMymaQICJqAlZlZdsmmY6IiGrT18p+5RXgU59q\njrWyGSSIiLaRnpX93e82R1Y2pwonItpmela2vlb2DTdYXaPaGCSIiCxgdVZ2vdjcRERkkfPOA77+\ndeD664Enn7S6NtUxSBARWeiSS7S1sq+5xp5Z2QwSREQWs3NWNvskiIhs4Oab7blWNpPpiIhsQs/K\nfvZZ4NvfNi8rmxnXREQt4uRJYM8eLfHOrKxsZlwTEbWI004DvvIV+2RlM0gQEdmMnbKy2XFNRGRD\noqjNFnvZZdZmZTNIEBHZ1LvfbX1WNpubiIhsTM/KvuEGa7KyTR/dlEgk4HQ6oSgKRFGsWF1urTKK\nomB+fh5utxuyLGNoaKi8shzdRERt6t/+DRga0nIozjlnY8du6bNTNVEul1OHh4eN7VAotKEypT8P\nDg5WHGsbGb7xAAAJcElEQVRydYmImsq996pqd7eqvvTSxo7bymenqX0SkiRBFEVjWxRFZLNZeL3e\ndcssLy+X7Z+bmzOzakRETe+WW4Bjx7Y3K9vUIFEsFtHV1WVsu1wuyLJcFiRqlSkUCgCAVCoFRVEA\nAJFIpOIa+/btM34OBAIIBAJmvgUiIlu7805t+o7du2tnZafTaaTTaVOu1/DRTYIg1FVODwx6/0Q4\nHIbP50N3d3dZudIgQUTUbgQB+Oxntazs66+vnpW9+gv0+Pj4pq9n6uim0uYiACgUCnC73euW8Xg8\ncLvdZWX1ZigiIiqnZ2UfO9b4rGxTg0Q0GkUulzO2FUVBb29vXWUGBgYgy3LZfp/PZ2b1iIhaxhln\nAA88oGVlT0017jqmD4FNpVIrJxcE7Nq1CwDg9/uxuLiIjo6OmmWSyaTRN9HV1YXdu3eXV5ZDYImI\nyvzsZ1pW9l/9ldb8VA1ngSUiamPPPgv84R9qK9xVy8rmLLBERG3s/PMbl5XNIEFE1AIuuQS47z7z\n18pmkCAiahFXXw38zd9oa2UfO2bOOTkLLBFRC7nllvK1sjs6tnY+dlwTEbUYVQX+9E+B557TsrLP\nOIOjm4iIqIS+VvZb3gIcPMjRTUREVELPyn755a2dh08SREQtTFEAp5PNTUREVAOT6YiIqCEYJIiI\nqCYGCSIiqolBgoiIamKQICKimhgkiIioJtODRCKRQCqVQjKZLFtcaCNl9NepscxaKJ14L83G+2kf\npgYJWZYhSRKCwSAikQgmJyc3XEZRFMzNzUFRFDOrRlXwf0Tz8F6ai/fTPkwNEpIkQRRFY1sURWSz\n2Q2VWVpaQn9/v5nVIiKiTTI1SBSLRXR1dRnbLpcLsizXXSaVSiEYDJpZJSIi2oKGrychCEJd5fL5\nPNxut2nno/qMj49bXYWWwXtpLt5PezA1SIiiWNaXUCgUKj74a5XJZDIAgEwmg8OHD2N5eRk+nw/d\n3d1GWc7bRES0vUwNEtFoFKOjo8a2oijo7e1dt4zX64XX6zX2HT58GP39/WUBgoiItp/ps8CWDl0V\nBAG7du0CAPj9fiwuLqKjo6NmGUB7krjtttvg8XgwMTHBQEFEZCFbThWeyWSwtLSEoaGhqq8nEgk4\nnU4oigJRFNnZvY717ufo6ChisRicTidSqRQikcg215CI7KrhHdcblUqlMD09XXMYrJ5nceDAAQBA\nOBxmkFjDevcTALLZLEKhEEKhED7/+c9vY+2aTzKZhCiKWFhYQH9/f9WAyi8x9avnfvJLTP1K//YK\nhULVL4Yb/vtUbWhmZkaNx+NVX5uenlZHR0eN7cHBQTWTyWxX1ZrSWvdTVVU1kUhsY22aVyaTUSVJ\nMrY9Ho+qKEpZmVwupw4PDxvboVBo2+rXbOq5n6qq3UOPx6PGYrHtrF7TOX78eNnfmyAIFWU28/fZ\ndHM31ZOLQRtTKBSQzWaRTCaRTCatro5tybKMhYUFY1sUReTz+bIy9SSUkqae+wkAw8PDOHr0KJ9y\n1yGKIg4dOgRAa2IeHh6uKLOZv0/bNTdtBnMntkZ/JPV6vfD7/RgYGEBnZ6fFtbKfSCRiNHUoigJZ\nlitG79X6ElM6eo809dxPYOVLjP5lkM1Na8tms5iZmak6LdJm/j6b7kmiNAoC1XMxqH6JRAJTU1PG\ntsvlqvptjsqNjY0ZuT3r4ZeY9a11P4eGhuD1ehGJRLB//34Ui8Vtrl1z8Xq9mJycRF9fX13l1/v7\ntGWQUNcYcBWNRpHL5YztarkYVG6t++nxeDAwMGBsFwoF3s91JJNJxGIx7Nixo+I1fonZuLXuJ7/E\n1C+TyRjpBXpLwOLiYlmZzfx92i5IpFIpSJIESZLK8in8fj9OnDiBzs5ODA4OIpVKIZVKYWxszMLa\n2t9699Pr9UKWZSSTSUxNTSEej1tYW/uTJAk+nw+9vb1QFKXiA4tfYjZmvfvJLzH1W1paqpg9e3UA\n2Mzfpy3zJIjsKJPJIBqNGt/G8vk8lpeXAdSfLEor6r2f+mAKWZbR19fH+7mG0nvl8Xiwe/duAFv7\n+2SQICKimmzX3ERERPbBIEFERDUxSBARUU0MEtQSkskk+vr64HA4EA6HjSzSfD7fsCGT1c4djUYx\nOztr2jVmZ2eNa6y+Xj6fLxseStQIDBLUEiKRCO69914A2th6PYN0fn6+7qS3jap27jvvvBOhUMiU\n88/MzEAQBGO6/NXX0/ebGZSIVmOQoJaxeqCeoiiYm5tryLVqnbu3t7dqUthmxONx3HrrrWteb+/e\nvVWnXyAyC4MEtay5uTnIsoyDBw+WJV0mEgnEYjFEo1GjuSYej8PhcGB2dhYzMzPo6ekx9o+NjSEa\njSIcDq957ng8DpfLVdYENDMzY1xLH8M+MzMDh8OBWCyGcDgMl8tV8TSweiK2Wu9FVzr2nchUW5yd\nlsg2lpaWVEEQ1GKxaOzzeDxqMpk0tnO5nOrxeIxtp9OpZrNZVVVVta+vTw2Hw6qiKMZ/S8/n8XjK\nplVffW5V1aaun5qaMurjdDqN1wRBUPP5vKqq2hTNfr9fVVVtyuzV0zpPTk5WTONc7Xr6uWZmZta5\nO0Sb0xKzwBLVK5FIAIDxbby/v9+YfVRVVbjdbnR2duI73/kOAG2qg1wuh4WFBRQKBRw/frzuax08\neBAej8fY9vl8SCQSuP322wEAe/bsAQCj/+TEiRPo6OgAACwvL1fMs7MWTnpHjcIgQW0jk8mgUChA\nFEVMTExUvC4IQtnMmYqiYGRkBHv27MHw8PCa/RvZbLZiumVBEOB0Oo1tdVWfyVpBoKenZ815/kuv\nx0kEqZHYJ0Etp/TD2O12Y3l5GZIkIZ/PIxQKIZPJGENJE4mE0Z6vqmrZh/rc3Bzy+TxuvfVWqKqK\nTCZT89z6Wgeqqhpl9uzZgyNHjhjls9ksrrvuuopy1eodDAbLjq11PUCbp6d0EjwiU1nUzEVkqkQi\nofb19akOh0MNh8PGkrYzMzOq0+lUo9GoUTYej6t9fX1qKBQy+g/m5+dVp9NZdqwsy0a54eFhdXR0\nVPV4PEYfxupz6+fw+/1lZYaHh9XBwUGjP6H0WrIsqyMjI6rD4ahYnnN4eLhsad5q72VhYUEdGxsz\n9V4SleIEf0Q2VSwWsX///qpNY7pYLIYDBw5sY62o3TBIENlcsVisupxsPp83EuqIGoVBgoiIamLH\nNRER1cQgQURENTFIEBFRTQwSRERUE4MEERHVxCBBREQ1/R9FyQ5w/Lc9EwAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 42
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment