Created
April 17, 2021 17:34
-
-
Save nishio/0a281988f2a9ddb37259e8a23fcf3316 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# included from libs/crt.py | |
""" | |
Chinese Remainder Theorem | |
""" | |
# included from libs/extended_euclidean.py | |
""" | |
Extended Euclidean algorithm | |
""" | |
def extended_euclidean(a, b, test=False): | |
""" | |
Given a, b, solve: | |
ax + by = gcd(a, b) | |
Returns x, y, gcd(a, b) | |
Other form, for a prime b: | |
ax mod b = gcd(a, b) = 1 | |
>>> extended_euclidean(3, 5, test=True) | |
3 * 2 + 5 * -1 = 1 True | |
>>> extended_euclidean(240, 46, test=True) | |
240 * -9 + 46 * 47 = 2 True | |
Derived from https://atcoder.jp/contests/acl1/submissions/16914912 | |
""" | |
init_a = a | |
init_b = b | |
s, u, v, w = 1, 0, 0, 1 | |
while b: | |
q, r = divmod(a, b) | |
a, b = b, r | |
s, u, v, w = v, w, s - q * v, u - q * w | |
if test: | |
print(f"{init_a} * {s} + {init_b} * {u} = {a}", | |
init_a * s + init_b * u == a) | |
else: | |
return s, u, a | |
# end of libs/extended_euclidean.py | |
def crt(a, m, b, n): | |
""" | |
Find x s.t. x % m == a and x % n == b | |
>>> crt(2, 3, 1, 5) | |
11 | |
>>> crt(1, 4, 3, 6) | |
9 | |
""" | |
x, y, g = extended_euclidean(m, n) | |
if g == 1: | |
return (b * m * x + a * n * y) % (m * n) | |
s = (b - a) // g | |
return (a + s * m * x) % (m * n // g) | |
# end of libs/crt.py | |
def test(a=712158808933002481389578163771, b=7, c=41): | |
from fractions import Fraction | |
numer = int(str(a) + str(b)) | |
denom = int(str(c) + str(a)) | |
nd = Fraction(numer, denom) | |
cb = Fraction(b, c) | |
if nd == cb: | |
print(f"{a}_{b} / {c}_{a} = {nd}") | |
for b in range(1, 10): | |
for c in range(11, 100): | |
if c == 10 * b: | |
continue | |
bc = b * c | |
MOD1 = 1_000_000_007 | |
MOD9 = 998_244_353 | |
for n in range(2, 18): | |
d = bc * (10 ** n - 1) | |
e = b - c * 10 | |
einv1 = pow(e, -1, MOD1) | |
a1 = -d * einv1 | |
einv9 = pow(e, -1, MOD9) | |
a9 = -d * einv9 | |
a = crt(a1, MOD1, a9, MOD9) | |
test(a, b, c) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment