Last active
October 27, 2022 18:05
-
-
Save njbbaer/4da02e2960636d349e9bae7ae43c213c to your computer and use it in GitHub Desktop.
Fast implementation of cellular automata using 2D convolution
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import numpy as np | |
from numpy.fft import fft2, ifft2 | |
from matplotlib import pyplot, animation | |
def fft_convolve2d(board, kernal): | |
board_ft = fft2(board) | |
kernal_ft = fft2(kernal) | |
height, width = board_ft.shape | |
convolution = np.real(ifft2(board_ft * kernal_ft)) | |
convolution = np.roll(convolution, - int(height / 2) + 1, axis=0) | |
convolution = np.roll(convolution, - int(width / 2) + 1, axis=1) | |
return convolution.round() | |
class Automata: | |
def __init__(self, shape, density, neighborhood, rule): | |
self.board = np.random.uniform(0, 1, shape) | |
self.board = self.board < density | |
n_height, n_width = neighborhood.shape | |
self.kernal = np.zeros(shape) | |
self.kernal[(shape[0] - n_height - 1) // 2 : (shape[0] + n_height) // 2, | |
(shape[1] - n_width - 1) // 2 : (shape[1] + n_width) // 2] = neighborhood | |
self.rule = rule | |
def update_board(self, intervals=1): | |
for i in range(intervals): | |
convolution = fft_convolve2d(self.board, self.kernal) | |
shape = convolution.shape | |
new_board = np.zeros(shape) | |
new_board[np.where(np.in1d(convolution, self.rule[0]).reshape(shape) | |
& (self.board == 1))] = 1 | |
new_board[np.where(np.in1d(convolution, self.rule[1]).reshape(shape) | |
& (self.board == 0))] = 1 | |
self.board = new_board | |
def benchmark(self, interations): | |
start = time.process_time() | |
self.update_board(interations) | |
print("Performed", interations, "iterations of", self.board.shape, "cells in", | |
time.process_time() - start, "seconds") | |
def animate(self, interval=100): | |
def update_animation(*args): | |
self.update_board() | |
self.image.set_array(self.board) | |
return self.image, | |
fig = pyplot.figure() | |
self.image = pyplot.imshow(self.board, interpolation="nearest", | |
cmap=pyplot.cm.gray) | |
ani = animation.FuncAnimation(fig, update_animation, interval=interval) | |
pyplot.show() | |
class Conway(Automata): | |
def __init__(self, shape, density): | |
neighborhood = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) | |
rule = [[2, 3], [3]] | |
Automata.__init__(self, shape, density, neighborhood, rule) | |
class Life34(Automata): | |
def __init__(self, shape, density): | |
neighborhood = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) | |
rule = [[3, 4], [3, 4]] | |
Automata.__init__(self, shape, density, neighborhood, rule) | |
class Amoeba(Automata): | |
def __init__(self, shape, density): | |
neighborhood = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) | |
rule = [[1, 3, 5, 8], [3, 5, 7]] | |
Automata.__init__(self, shape, density, neighborhood, rule) | |
class Anneal(Automata): | |
def __init__(self, shape, density): | |
neighborhood = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) | |
rule = [[3, 5, 6, 7, 8], [4, 6, 7, 8]] | |
Automata.__init__(self, shape, density, neighborhood, rule) | |
class Bugs(Automata): | |
def __init__(self, shape, density): | |
neighborhood = np.ones((11, 11)) | |
rule = [np.arange(34, 59), np.arange(34, 46)] | |
Automata.__init__(self, shape, density, neighborhood, rule) | |
class Globe(Automata): | |
def __init__(self, shape, density): | |
neighborhood = np.ones((10, 1)) | |
rule = [np.arange(34, 59), np.arange(34, 46)] | |
Automata.__init__(self, shape, density, neighborhood, rule) | |
class Animation: | |
def __init__(self, automata, interval=100): | |
self.automata = automata | |
fig = pyplot.figure() | |
self.image = pyplot.imshow(self.automata.board, interpolation="nearest", | |
cmap=pyplot.cm.gray) | |
ani = animation.FuncAnimation(fig, self.animate, interval=interval) | |
pyplot.show() | |
def animate(self, *args): | |
self.automata.update_board() | |
self.image.set_array(self.automata.board) | |
return self.image, | |
def main(): | |
# Create automata | |
automata = Bugs((256, 256), density=0.5) | |
# automata = Conway((256, 256), density=0.5) | |
# automata = Life34((256, 256), density=0.12) | |
# automata = Amoeba((256, 256), density=0.18) | |
# automata = Anneal((256, 256), density=0.5) | |
# Benchmark automata | |
# automata.benchmark(interations=100) | |
# Animate automata | |
automata.animate(interval=100) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment