library(tidyverse)
mock_data <- tribble(
~park_name, ~count_2015,
"DISNEY_ANIMAL_KINGDOM", 10262808.79,
"DISNEY_CALIFORNIA_ADVENTURE", 7859777.858,
"DISNEY_HOLLYWOOD_STUDIOS", 10161975.17,
"DISNEYLAND", 15850608.32,
"DISNEYLAND_PARIS", 11303153.4,
"EPCOT", 11048540.24,
"EUROPA_PARK", 4600339.552,
"EVERLAND", 7108378.079,
"HONG_KONG_DISNEYLAND", 6508497.992,
"ISLANDS_OF_ADVENTURE", 7419398.232,
"MAGIC_KINGDOM", 17124831.22,
"NAGASHIMA_SPA_LAND", 5305896.091,
"OCEAN_PARK", 6860359.451,
"SEAWORLD_FL", 5440392.711,
"TIVOLI_GARDENS", 4249590.638,
"TOKYO_DISNEY_SEA", 13529866.78,
"TOKYO_DISNEYLAND", 15279509.39,
"UNIVERSAL_STUDIOS_FL", 7079618.369,
"UNIVERSAL_STUDIOS_HOLLYWOOD", 5956300.006,
"UNIVERSAL_STUDIOS_JAPAN", 9611463.005
)
library(ggalt)
# geom_dumbbell idea
mock_data %>%
# add some pseudo predictions
mutate(count_2016 = (count_2015 + 1000000)) %>%
ggplot(aes(x = count_2015,
xend = count_2016,
y = reorder(park_name, count_2016))) +
geom_dumbbell(point.colour.l = "salmon",
point.colour.r = "steelblue")

# geom_bar reworking
mock_data %>%
# add some pseudo predictions
mutate(prediction = (count_2015 + 1000000)) %>%
gather(key = "year",
value = "value",
-park_name) %>%
ggplot(aes(x = reorder(park_name, value),
y = value,
fill = year)) +
geom_col(position = "dodge") +
coord_flip() +
labs(x = "Park Names",
y = "Attendance",
title = "Attendance at Theme Parks",
subtitle = "Using data from the Themed Entertainment Association") +
theme_minimal()
