-
-
Save nkaretnikov/9e2349d2c22b4731ddd6 to your computer and use it in GitHub Desktop.
Eq
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(* https://coq.inria.fr/distrib/current/refman/Reference-Manual022.html *) | |
Class Eq (A : Type) := { | |
eqb : A -> A -> bool ; | |
eqb_leibniz : forall x y, eqb x y = true -> x = y ; | |
leibniz_eqb : forall x y, x = y -> eqb x y = true }. | |
Instance Eq_nat : Eq nat := | |
{ eqb x y := beq_nat x y }. | |
(* eqb_leibniz *) | |
intros. apply beq_nat_true. apply H. | |
(* leibniz_eqb *) | |
induction x as [|x']. | |
intros. | |
rewrite <- H. reflexivity. | |
intros. destruct y as [|y']. | |
inversion H. | |
simpl. apply IHx'. inversion H. reflexivity. | |
Defined. | |
Fixpoint beq_list {X : Type} {eq : Eq X} (xs ys : list X) : bool := | |
match (xs, ys) with | |
| ([] , [] ) => true | |
| ([] , _::_ ) => false | |
| (_::_ , [] ) => false | |
| (x::xt, y::yt) => | |
if eqb x y | |
then beq_list xt yt | |
else false | |
end. | |
Instance Eq_list {X : Type} {eq : Eq X} : Eq (list X) := | |
{ eqb xs ys := beq_list xs ys }. | |
Proof. | |
(* eqb_leibniz *) | |
induction x as [|n ns]. | |
Case "x = []". | |
intros. | |
destruct y as [|m ms]. | |
SCase "y = []". | |
reflexivity. | |
SCase "y = m::ms". | |
inversion H. | |
Case "x = n::ns". | |
destruct y as [|m ms]. | |
SCase "y = []". | |
intros. | |
inversion H. | |
SCase "y = m::ms". | |
intros. | |
inversion H. | |
destruct (eqb n m) eqn:Heqb. | |
Focus 2. | |
SSCase "false". | |
inversion H1. | |
SSCase "true". | |
apply eqb_leibniz in Heqb. | |
rewrite Heqb. | |
apply IHns in H1. | |
rewrite H1. | |
reflexivity. | |
(* leibniz_eqb *) | |
induction x as [|x xt]. | |
intros. rewrite <- H. reflexivity. | |
intros. simpl. destruct y as [|y yt]. | |
inversion H. | |
destruct (eqb x y) eqn:eqb_x_y. | |
apply IHxt. inversion H. reflexivity. | |
inversion H. inversion eqb_x_y. | |
apply leibniz_eqb in H1. rewrite H1 in H3. inversion H3. | |
Defined. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment