Created
January 18, 2016 19:54
-
-
Save nkt1546789/026faaa210639f31ad9d to your computer and use it in GitHub Desktop.
A demo code for ranking SVM.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
A demo code for ranking SVM | |
The data used in this code comes from http://download.joachims.org/svm_light/examples/example3.tar.gz | |
""" | |
import numpy as np | |
import itertools | |
from sklearn.linear_model import SGDClassifier | |
from sklearn.grid_search import GridSearchCV | |
np.random.seed(0) | |
def transform(X,y): | |
order=np.argsort(y) | |
Xordered=X[order] | |
yordered=y[order] | |
Xnew=[] | |
ynew=[] | |
for i,j in itertools.combinations(range(X.shape[0]),2): | |
Xnew.append(Xordered[i]-Xordered[j]) | |
ynew.append(1) | |
return Xnew,ynew | |
def transform_randomly(X,y): | |
idx=np.random.permutation(len(y)) | |
X=X[idx] | |
y=y[idx] | |
Xnew=[] | |
ynew=[] | |
for i,j in itertools.combinations(range(X.shape[0]),2): | |
Xnew.append(X[i]-X[j]) | |
if y[i]>=y[j]: | |
ynew.append(1) | |
else: | |
ynew.append(-1) | |
return Xnew,ynew | |
Xtr=np.array([[1, 1, 0, 0.2, 0], | |
[0, 0, 1, 0.1, 1], | |
[0, 1, 0, 0.4, 0], | |
[0, 0, 1, 0.3, 0], | |
[0, 0, 1, 0.2, 0], | |
[1, 0, 1, 0.4, 0], | |
[0, 0, 1, 0.1, 0], | |
[0, 0, 1, 0.2, 0], | |
[0, 0, 1, 0.1, 1], | |
[1, 1, 0, 0.3, 0], | |
[1, 0, 0, 0.4, 1], | |
[0, 1, 1, 0.5, 0]]) | |
ytr=np.array([3,2,1,1,1,2,1,1,2,3,4,1]) | |
qids=np.array([1,1,1,1,2,2,2,2,3,3,3,3]) | |
Xte=np.array([[1, 0, 0, 0.2, 1], | |
[1, 1, 0, 0.3, 0], | |
[0, 0, 0, 0.2, 1], | |
[0, 0, 1, 0.2, 0]]) | |
yte=np.array([4,3,2,1]) | |
Xtr_transformed=[] | |
ytr_transformed=[] | |
for qid in np.unique(qids): | |
#Xp,yp=transform(Xtr[qids==qid],ytr[qids==qid]) | |
Xp,yp=transform_randomly(Xtr[qids==qid],ytr[qids==qid]) | |
Xtr_transformed+=Xp | |
ytr_transformed+=yp | |
Xtr_transformed=np.array(Xtr_transformed) | |
ytr_transformed=np.array(ytr_transformed) | |
clf=SGDClassifier(loss="hinge",penalty="l2") | |
clf=GridSearchCV(clf,param_grid={"alpha":np.logspace(-1,7,10)}).fit(Xtr_transformed,ytr_transformed).best_estimator_ | |
scores=clf.decision_function(Xte).ravel() | |
print "true ranking:",np.argsort(yte)[::-1] | |
print "predicted ranking:",np.argsort(scores)[::-1] | |
print "scores:",scores |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment