Created
January 23, 2017 18:01
-
-
Save nkt1546789/5871b132346a5aa3f58946c1d898a6c5 to your computer and use it in GitHub Desktop.
Simple neural network with tensorflow.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
class SimpleClassifier(object): | |
def __init__(self, m=None, random_state=1, n_epochs=20): | |
self.m = m | |
self.random_state = random_state | |
self.n_epochs = n_epochs | |
def fit(self, X, y): | |
n, d = X.shape | |
if self.m is None: | |
self.m = d | |
self.mu = X.mean(axis=0) | |
X_train = X - self.mu | |
tf.set_random_seed(self.random_state) | |
x_ = tf.placeholder(tf.float32, shape=[n, d]) | |
y_ = tf.placeholder(tf.float32, shape=[n, 1]) | |
W = tf.Variable(tf.random_normal([d, self.m])) | |
b = tf.Variable(tf.random_normal([self.m])) | |
w = tf.Variable(tf.random_normal([self.m, 1])) | |
u = tf.sign(tf.matmul(x_, W) + b) | |
ypred = tf.matmul(u, w) | |
loss = -tf.reduce_sum(tf.multiply(y_, ypred)) | |
#loss = -tf.reduce_mean(tf.multiply(y_, ypred)) | |
train = tf.train.GradientDescentOptimizer(0.001).minimize(loss) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
for i in range(self.n_epochs): | |
sess.run(train, feed_dict={x_: X_train, y_: np.c_[y]}) | |
self.W = sess.run(W) | |
self.b = sess.run(b) | |
self.w = sess.run(w) | |
return self | |
def decision_function(self, X): | |
Xce = X - self.mu | |
u = np.sign(Xce.dot(self.W) + self.b) | |
return u.dot(self.w) | |
def predict(self, X): | |
z = self.decision_function(X) | |
return (z >= 0) * 2 - 1 | |
if __name__ == '__main__': | |
import matplotlib.pyplot as plt | |
r = np.random.RandomState(1) | |
n = 500 | |
X = np.r_[ | |
r.multivariate_normal([10, 10], [[0.1, 0], [0, 0.1]], size=n), | |
r.multivariate_normal([9, 9], [[0.1, 0], [0, 0.1]], size=n) | |
] | |
y = np.concatenate([ | |
np.repeat(1, n), | |
np.repeat(-1, n) | |
]) | |
sc = SimpleClassifier(m=None, random_state=1, n_epochs=1) | |
sc.fit(X, y) | |
for v1, v2 in np.c_[sc.decision_function(X), y]: | |
print(v1, v2) | |
xx, yy = np.meshgrid( | |
np.linspace(np.min(X[:,0])-1.0, np.max(X[:,0])+1.0, 100), | |
np.linspace(np.min(X[:,1])-1.0, np.max(X[:,1])+1.0, 100) | |
) | |
Xte = np.c_[xx.ravel(), yy.ravel()] | |
Z = sc.decision_function(Xte) | |
Z = Z.reshape(xx.shape) | |
plt.scatter(X[:,0], X[:,1], c=y, marker="o", s=30) | |
plt.contour(xx, yy, Z, levels=[0]) | |
plt.tight_layout() | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Decision boundary of a demo data: