Last active
August 29, 2016 14:29
-
-
Save nkt1546789/be19e0fe94e3599df81f83e78482786b to your computer and use it in GitHub Desktop.
(low-rank kernel) Information theoretic metric leanring
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import scipy.sparse.linalg as sla | |
def KITML_lr(K0, constraints, dm=None, dc=None, gamma=1., max_iter=1000, stop_threshold=1e-3, max_k=None): | |
# check if K0 is symmetric | |
if max_k is None: | |
max_k = K0.shape[0]-1 | |
S, U = sla.eigsh(K0, k=max_k) | |
U = U[:,::-1] | |
S = S[::-1] | |
for k in xrange(max_k): | |
if (np.sum(S[:k])/np.sum(S))>=0.99: | |
break | |
Phi = np.dot(U[:,:k],np.diag(np.sqrt(S[:k]))) | |
print "k:",k | |
A = ITML(Phi,constraints,dm=dm,dc=dc,gamma=gamma,max_iter=max_iter,stop_threshold=stop_threshold) | |
K = Phi.dot(A.dot(Phi.T)) | |
return K | |
def ITML(X, constraints, dm=None, dc=None, gamma=1.0, max_iter=1000, stop_threshold=1e-3): | |
n,d=X.shape | |
X2=np.c_[np.sum(X**2,axis=1)] | |
dist2=X2+X2.T-2*X.dot(X.T) | |
dist2=dist2[np.tril_indices(n,-1)] | |
if dm is None: | |
dm=np.min([0.05,np.percentile(dist2,1)]) | |
if dc is None: | |
dc=np.max([1.95,np.percentile(dist2,99)]) | |
print "dm:{0}, dc:{1}".format(dm,dc) | |
Xi={}; Lambda={}; A=np.identity(X.shape[1]); | |
for iteration in xrange(max_iter): | |
Aold=A.copy() | |
updates=0. # the number of updates. this should converge to 0 | |
for delta,i,j in constraints: | |
i=int(i); j=int(j); | |
p=(X[i]-X[j]).dot(A).dot((X[i]-X[j])) | |
if delta==1: | |
Xi.setdefault((i,j),dm); | |
if p<=Xi[(i,j)]: # if the must-link constraint is already satisfied | |
continue | |
else: | |
Xi.setdefault((i,j),dc); | |
if p>=Xi[(i,j)]: # if the cannot-link constraint is already satisfied | |
continue | |
Lambda.setdefault((i,j),0.) | |
if p==0: | |
continue | |
alpha=min(Lambda[(i,j)],(delta/2.)*(1./p-gamma/Xi[(i,j)])) | |
if alpha==0: | |
continue | |
updates+=1 | |
beta=(delta*alpha)/(1.-delta*alpha*p) | |
de = gamma+delta*alpha*Xi[(i,j)] | |
Xi[(i,j)]=(gamma*Xi[(i,j)])/de | |
Lambda[(i,j)]=Lambda[(i,j)]-alpha | |
xij=np.c_[X[i]-X[j]] | |
A=A+beta*A.dot(xij.dot(xij.T)).dot(A) | |
print "number of updates:",updates | |
diff=np.sqrt(np.sum((A-Aold)**2)) | |
#print diff | |
#if updates < 600: | |
if diff<stop_threshold: | |
print "converged at {0} steps".format(iteration) | |
break | |
return A |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment