Skip to content

Instantly share code, notes, and snippets.

@nlgranger
Last active February 2, 2020 00:52
Show Gist options
  • Save nlgranger/c02a015af63bd1d18a484ebb34e408b4 to your computer and use it in GitHub Desktop.
Save nlgranger/c02a015af63bd1d18a484ebb34e408b4 to your computer and use it in GitHub Desktop.
Pytorch's Dataloader reimplemented using SeqTools
"""A reimplementeation of PyTorch's DataLoader to showcase seqtools.
:author: Nicolas Granger
:license: 0BSD (~public domain)
"""
import numbers
import random
from functools import singledispatch
from multiprocessing import sharedctypes
import numpy as np
import torch
import seqtools
@singledispatch
def into_tensors(value):
return torch.tensor(value)
@into_tensors.register(torch.Tensor)
def _(value):
return value
@into_tensors.register(np.ndarray)
def _(value):
return torch.from_numpy(value)
@into_tensors.register(tuple)
def _(value):
return tuple(into_tensors(v) for v in value)
@into_tensors.register(list)
def _(value):
return [into_tensors(v) for v in value]
@into_tensors.register(dict)
def _(value):
return {k: into_tensors(v) for k, v in value.items()}
@singledispatch
def pin_memory(value):
return value.pin_memory()
@pin_memory.register(tuple)
def _(value):
return tuple(pin_memory(v) for v in value)
@pin_memory.register(list)
def _(value):
return [pin_memory(v) for v in value]
@pin_memory.register(dict)
def _(value):
return {k: pin_memory(v) for k, v in value.items()}
@singledispatch
def default_collate_fn(values):
if not isinstance(values, (list, tuple)):
values = list(values)
sample = values[0]
if isinstance(sample, torch.Tensor):
return torch.stack(values)
elif isinstance(sample, np.ndarray):
return np.stack(values)
elif isinstance(sample, numbers.Integral):
return np.array(values)
elif isinstance(sample, tuple):
return tuple(default_collate_fn(row) for row in zip(*values))
elif isinstance(sample, list):
return [default_collate_fn(*row) for row in zip(*values)]
elif isinstance(sample, dict):
return {k: default_collate_fn(*(v[k] for v in values))
for k in values[0].keys()}
class DataLoader:
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None):
"""
Natbale differences:
- all dataset elements must have the same shape
- custom samplers are not implemented
- timeout is irrelevant
"""
if sampler is not None or batch_sampler is not None:
raise NotImplementedError("custom samplers are not supported yet")
# shuffle
if shuffle:
self.shuffling_indexes = memoryview(sharedctypes.RawArray('L', range(len(dataset))))
dataset = seqtools.gather(dataset, self.shuffling_indexes)
else:
self.shuffling_indexes = None
if batch_size is not None:
dataset = seqtools.batch(
dataset,
k=batch_size, drop_last=drop_last,
collate_fn=collate_fn or default_collate_fn)
if num_workers > 0:
dataset = seqtools.prefetch(
dataset,
max_buffered=num_workers * 10, nworkers=num_workers, method='sharedmem',
start_hook=worker_init_fn)
# convert values into tensors
dataset = seqtools.smap(into_tensors, dataset)
if pin_memory:
dataset = seqtools.smap(pin_memory, dataset)
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __iter__(self):
if self.shuffling_indexes is not None:
random.shuffle(self.shuffling_indexes)
return iter(self.dataset)
# Adapted from https://github.com/pytorch/examples/blob/master/mnist/main.py
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
import seqtools
from docs.examples.dataloader import DataLoader
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {'num_workers': 1}
train_loader = DataLoader(
seqtools.starmap(
lambda img, label: ((np.asarray(img, dtype=np.float32)[None] - 0.1307) / 0.3081, label),
datasets.MNIST('/tmp/MNIST', train=True, download=True)),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = DataLoader(
seqtools.starmap(
lambda img, label: ((np.asarray(img, dtype=np.float32)[None] - 0.1307) / 0.3081, label),
datasets.MNIST('/tmp/MNIST', train=False, download=True)),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
scheduler.step()
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment