Last active
October 22, 2024 05:06
-
-
Save nlitsme/c9031c7b9bf6bb009e5a to your computer and use it in GitHub Desktop.
example of bitcoin curve calculations in python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
""" | |
Example of how calculations on the secp256k1 curve work. | |
secp256k1 is the name of the elliptic curve used by bitcoin | |
see http://bitcoin.stackexchange.com/questions/25382 | |
""" | |
## the prime modules used in the elliptic curve coordinate calculations | |
p = 2**256 - 2**32 - 977 | |
## the group order, used with the elliptic curve scalar multiplication calculations | |
n = 2**256 - 0x14551231950B75FC4402DA1732FC9BEBF | |
def inverse(x, p): | |
""" | |
Calculate the modular inverse of x ( mod p ) | |
the modular inverse is a number such that: | |
(inverse(x, p) * x) % p == 1 | |
you could think of this as: 1/x | |
""" | |
inv1 = 1 | |
inv2 = 0 | |
while p != 1 and p!=0: | |
inv1, inv2 = inv2, inv1 - inv2 * (x // p) | |
x, p = p, x % p | |
return inv2 | |
def dblpt(pt, p): | |
""" | |
Calculate pt+pt = 2*pt | |
""" | |
if pt is None: | |
return None | |
(x,y)= pt | |
if y==0: | |
return None | |
# Calculate 3*x^2/(2*y) modulus p | |
slope= 3*pow(x,2,p)*inverse(2*y,p) | |
xsum= pow(slope,2,p)-2*x | |
ysum= slope*(x-xsum)-y | |
return (xsum%p, ysum%p) | |
def addpt(p1,p2, p): | |
""" | |
Calculate p1+p2 | |
""" | |
if p1 is None or p2 is None: | |
return None | |
(x1,y1)= p1 | |
(x2,y2)= p2 | |
if x1==x2: | |
if y1==y2: | |
return dblpt(p1, p) | |
elif (y1+y2) % p == 0: | |
return None | |
else: | |
raise Exception("invalid points added") | |
# calculate (y1-y2)/(x1-x2) modulus p | |
slope=(y1-y2)*inverse(x1-x2, p) | |
xsum= pow(slope,2,p)-(x1+x2) | |
ysum= slope*(x1-xsum)-y1 | |
return (xsum%p, ysum%p) | |
def ptmul(pt,a, p): | |
""" | |
Scalar multiplication: calculate pt*a | |
basically adding pt to itself a times | |
""" | |
scale= pt | |
acc=None | |
while a: | |
if a&1: | |
if acc is None: | |
acc= scale | |
else: | |
acc= addpt(acc,scale, p) | |
scale= dblpt(scale, p) | |
a >>= 1 | |
return acc | |
def isoncurve(pt,p): | |
""" | |
returns True when pt is on the secp256k1 curve | |
""" | |
(x,y)= pt | |
return (y**2 - x**3 - 7)%p == 0 | |
# (Gx,Gy) is the secp256k1 generator point | |
Gx=0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 | |
Gy=0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 | |
g= (Gx,Gy) | |
g2=dblpt(g, p) | |
print(" 2*G= (%x,%x)" % g2) | |
print(" G+2*G= (%x,%x)" % addpt(g, g2, p)) | |
print("2*G+2*G= (%x,%x)" % addpt(g2, g2, p)) | |
privkey= 0xf8ef380d6c05116dbed78bfdd6e6625e57426af9a082b81c2fa27b06984c11f3 | |
print(" -> pubkey= (%x,%x)" % ptmul(g, privkey, p)) | |
# note that here I have to use the grouporder 'n' | |
halvekey = (privkey * inverse(2, n)) % n | |
print(" halvekey = %x" % halvekey) | |
halvepub = ptmul(g, halvekey, p) | |
print(" pub / 2 = (%x,%x)" % halvepub) | |
print("2 * halvepub: (%x,%x)" % addpt(halvepub, halvepub, p)) | |
""" | |
for reference, the numbers printed should be: | |
2*G= (c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5,1ae168fea63dc339a3c58419466ceaeef7f632653266d0e1236431a950cfe52a) | |
G+2*G= (f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9,388f7b0f632de8140fe337e62a37f3566500a99934c2231b6cb9fd7584b8e672) | |
2*G+2*G= (e493dbf1c10d80f3581e4904930b1404cc6c13900ee0758474fa94abe8c4cd13,51ed993ea0d455b75642e2098ea51448d967ae33bfbdfe40cfe97bdc47739922) | |
-> pubkey= (71ee918bc19bb566e3a5f12c0cd0de620bec1025da6e98951355ebbde8727be3,37b3650efad4190b7328b1156304f2e9e23dbb7f2da50999dde50ea73b4c2688) | |
halvekey = fc779c06b60288b6df6bc5feeb73312e88f8a3f027e5ac2bf7ba6cc9b441299a | |
pub / 2 = (d6c8d2ecbce68e0bf127c889be491c2a4f26a84c15b1fe8688f42728baea6c18,49a300586b09945c63e89df3c1739fb30567cec3da037d0402222c3b7f05c6e2) | |
2 * halvepub: (71ee918bc19bb566e3a5f12c0cd0de620bec1025da6e98951355ebbde8727be3,37b3650efad4190b7328b1156304f2e9e23dbb7f2da50999dde50ea73b4c2688) | |
""" | |
# this shows how to multiply by -1 | |
print(" G = (%x,%x)" % g) | |
gminus = ptmul(g,n-1, p) | |
print(" -G = (%x,%x)" % gminus) | |
gminusminus = ptmul(gminus,n-1, p) | |
print(" -(-G) = (%x,%x)" % gminusminus) | |
gminusplus = addpt(g,gminus, p) | |
# this will output the point at infinity, currently represented as 'None' | |
print(" G+(-G) = %s" % gminusplus) |
So you are asking: how do I found 'Q if P = n * Q ? You can use this
division in secp256k1 is equivalent to multiplying by the modular inverse.
In that case yes. Given 257 bits long natural integer n
and point P
retrieving point Q
.
I still think you should add the code to your gist in order to work with Koblitz curves.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
So you are asking: how do I found 'Q if P = n * Q ?
You can use this
division in secp256k1 is equivalent to multiplying by the modular inverse.