Created
October 31, 2020 03:41
-
-
Save nnop/916a2542a345887f3d18051579ac9dfa to your computer and use it in GitHub Desktop.
3d to cylinder projection
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# | |
# Copyright (C) 2020, Momenta Co. Ltd. | |
# All rights reserved. | |
import logging | |
import math | |
from copy import deepcopy | |
import numpy as np | |
from scipy.spatial.transform import Rotation as R | |
def rotate_mat(axis, radian): | |
return expm(np.cross(np.eye(3), axis / np.linalg.norm(axis) * radian)) | |
def extrinsic(cam_param): | |
R_w2c = np.array(cam_param['rotation_matrix']).reshape(3, 3) | |
T_w2c = np.array([cam_param["cam_to_front"], | |
(cam_param["cam_to_left"] - | |
cam_param["cam_to_right"]) / 2.0, | |
-cam_param['camera_height']]) | |
T_w2c = R_w2c.dot(T_w2c) | |
R_l2c = np.eye(4) | |
R_l2c[:3, :3] = R_w2c | |
R_l2c[:3, 3] = T_w2c | |
extrinsic_list = R_w2c.reshape(-1).tolist() | |
extrinsic_list.extend(T_w2c.reshape(-1).tolist()) | |
return R_l2c, extrinsic_list | |
def eulerAnglesToRotationMatrix(theta): | |
R_x = np.array([[1, 0, 0], | |
[0, math.cos(theta[0]), -math.sin(theta[0])], | |
[0, math.sin(theta[0]), math.cos(theta[0])]]) | |
R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1])], | |
[0, 1, 0], | |
[-math.sin(theta[1]), 0, math.cos(theta[1])]]) | |
R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], | |
[math.sin(theta[2]), math.cos(theta[2]), 0], | |
[0, 0, 1]]) | |
R = np.dot(R_z, np.dot(R_y, R_x)) | |
return R | |
def regular_angle(angle): | |
if angle > np.pi: | |
angle -= 2 * np.pi | |
elif angle < -np.pi: | |
angle += 2 * np.pi | |
return angle | |
def rotate_upright(R_l2c): | |
ext_cam_body = np.linalg.inv(R_l2c) | |
camhlu_to_cam_R = np.array([[0, -1, 0], [0, 0, -1], [1, 0, 0]]) | |
camhlu_to_body_R = ext_cam_body[:3, :3].dot(camhlu_to_cam_R) | |
rot = R.from_dcm(camhlu_to_body_R) | |
euler = rot.as_euler('zyx') | |
if abs(euler[1]) + abs(euler[2]) > 0.8 * np.pi: | |
yaw = regular_angle(euler[0] + np.pi) | |
else: | |
yaw = regular_angle(euler[0]) | |
upright_ext_camhlu_body_R = eulerAnglesToRotationMatrix([0, 0, yaw]) | |
upright_ext_cam_body_R = upright_ext_camhlu_body_R.dot( | |
np.linalg.inv(camhlu_to_cam_R)) | |
R_c2l = np.zeros((4, 4)) | |
R_c2l[:3, :3] = upright_ext_cam_body_R | |
R_c2l[:, 3] = ext_cam_body[:, 3] | |
R_c2l[3, 3] = 1 | |
return np.linalg.inv(R_c2l) | |
def cylinder_intrinsic(hfov_degree, width, fov_u, fov_d): | |
cx = width * 0.5 | |
fx = width / (hfov_degree / 180.0 * math.pi) | |
fy = fx | |
upper_height = math.tan(fov_u * math.pi / 180.0) * fy | |
cy = int(upper_height * 2) * 0.5 | |
return fx, fy, cx, cy | |
class LidarHelper(object): | |
def __init__(self, x, y, z, h, d, w, yaw, pitch, roll, | |
vx=None, vy=None, vz=None, track_id=-1): | |
self.x = float(x) | |
self.y = float(y) | |
self.z = float(z) | |
self.d = float(d) # height | |
self.h = float(h) # width | |
self.w = float(w) # length | |
self.yaw = float(yaw) | |
self.pitch = float(pitch) | |
self.roll = float(roll) | |
self.vx = vx | |
self.vy = vy | |
self.vz = vz | |
self.track_id = int(track_id) | |
class CylinderCameraHelper: | |
''' to be documented ''' | |
@staticmethod | |
def convert_fisheye_to_cylinder(fisheye_param, image_h, image_w): | |
cylinder_param = deepcopy(fisheye_param) | |
cylinder_param['image_height'] = image_h | |
cylinder_param['image_width'] = image_w | |
R_l2c = np.eye(4) | |
R_l2c[:3, :3] = np.array(cylinder_param['extrinsic'][:9]).reshape(3, 3) | |
R_l2c[:3, 3] = np.array(cylinder_param['extrinsic'][9:12]) | |
cylinder_param['extrinsic'] = rotate_upright(R_l2c).reshape(-1).tolist() | |
fx, fy, cx, cy = cylinder_intrinsic( | |
hfov_degree=180, width=image_w, fov_u=30, fov_d=60) # HACK: magic number | |
cylinder_param['intrinsic'] = [fx, 0, cx, 0, fy, cy, 0, 0, 1] | |
return cylinder_param | |
@staticmethod | |
def lidar_to_camera(cam_param, lidar): | |
R_l2c = np.array(cam_param['extrinsic']).reshape((4, 4)) | |
center_coor = np.array([lidar.x, lidar.y, lidar.z]) | |
corners = [ | |
np.array([ lidar.w/2, lidar.h/2, lidar.d/2]), | |
np.array([-lidar.w/2, lidar.h/2, lidar.d/2]), | |
np.array([-lidar.w/2, -lidar.h/2, lidar.d/2]), | |
np.array([ lidar.w/2, -lidar.h/2, lidar.d/2]), | |
np.array([ lidar.w/2, lidar.h/2, -lidar.d/2]), | |
np.array([-lidar.w/2, lidar.h/2, -lidar.d/2]), | |
np.array([-lidar.w/2, -lidar.h/2, -lidar.d/2]), | |
np.array([ lidar.w/2, -lidar.h/2, -lidar.d/2]) | |
] | |
euler_angle = np.array([lidar.roll, lidar.pitch, lidar.yaw]) | |
rotation_matrix = eulerAnglesToRotationMatrix(euler_angle) | |
center3d = np.array( | |
[center_coor[0], center_coor[1], center_coor[2], 1]) | |
center3d = R_l2c.dot(center3d)[:3] | |
corners3d = [] | |
for corner in corners: | |
corner_coor = rotation_matrix.dot(corner) + center_coor | |
corner3d = np.array( | |
[corner_coor[0], corner_coor[1], corner_coor[2], 1]) | |
corner3d = R_l2c.dot(corner3d)[:3] | |
corners3d.append(corner3d.tolist()) | |
return center3d, corners3d | |
@staticmethod | |
def camera_to_image(cam_param, p3d): | |
valid = False | |
if p3d[2] < 0 or p3d[0]**2 + p3d[2]**2 < 1e-6: | |
return valid, [0, 0] | |
fx = cam_param['intrinsic'][0] | |
fy = cam_param['intrinsic'][4] | |
cx = cam_param['intrinsic'][2] | |
cy = cam_param['intrinsic'][5] | |
theta_x = math.atan2(p3d[0], p3d[2]) | |
yr = p3d[1] / math.sqrt(p3d[0]**2 + p3d[2]**2) | |
p2d = np.array([fx * theta_x + cx, fy * yr + cy]) | |
p2d[0] = min(cam_param['image_width'], max(0, p2d[0])) | |
p2d[1] = min(cam_param['image_height'], max(0, p2d[1])) | |
return True, p2d.tolist() | |
@staticmethod | |
def image_to_camera(cam_param, p2d): | |
fx = cam_param['intrinsic'][0] | |
fy = cam_param['intrinsic'][4] | |
cx = cam_param['intrinsic'][2] | |
cy = cam_param['intrinsic'][5] | |
xd = p2d[0] - cx | |
yd = p2d[1] - cy | |
theta_x = xd / fx | |
yr = yd / fy | |
xr = math.sin(theta_x) | |
zr = math.cos(theta_x) | |
length_inv = 1 / math.sqrt(xr**2 + yr**2 + zr**2) | |
p3d = np.array([length_inv * xr, length_inv * yr, length_inv * zr]) | |
return p3d.tolist() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import random | |
import os.path as osp | |
import logging | |
import json | |
from glob import glob | |
import numpy as np | |
import matplotlib | |
# matplotlib.use('Agg') | |
import matplotlib.pyplot as plt | |
import cv2 | |
logging.basicConfig(format='[%(filename)s:%(lineno)d] %(message)s', level=logging.INFO) | |
import camera | |
from vis import draw_text, draw_bbox, text_args | |
def get_times(pattern): | |
files = glob(pattern) | |
times = np.array([np.int64(osp.basename(p).split('.')[0]) for p in files]) | |
return times | |
def get_nearest_time(t, times): | |
return times[np.abs(np.int64(t) - times).argmin()] | |
class FramesHolder: | |
def __init__(self, data_dir, file_ext, exact=False, delay_thresh=1000): | |
self.dir = data_dir | |
self.ext = file_ext | |
self.exact = exact | |
self.delay_thresh = delay_thresh | |
if not self.exact: | |
self.times = get_times(osp.join(self.dir, '*.' + self.ext)) | |
def get_nearest_file(self, t): | |
t = np.int64(t) | |
t_nearest = t if self.exact else get_nearest_time(t, self.times) | |
if abs(t_nearest - t) > self.delay_thresh: | |
logging.warning('diff ({}, {}) > delay_thresh: {}, {}'.format(t, t_nearest, self.delay_thresh, self.dir)) | |
return None | |
match_p = osp.join(self.dir, '{}.{}'.format(t_nearest, self.ext)) | |
assert osp.isfile(match_p), match_p | |
return match_p, t_nearest - t | |
def show_lidar(info3d, cam_param, ax): | |
df = [] | |
# process each object | |
i_obj = 0 | |
for obj in info3d['children']: | |
lidar_info = camera.LidarHelper(x=obj['x'], y=obj['y'], z=obj['z'], | |
h=obj['width'], d=obj['height'], w=obj['length'], | |
yaw=obj['yaw'], pitch=obj['pitch'], roll=obj['roll'], | |
track_id=obj['uuid']) | |
center3d, corners3d = camera.CylinderCameraHelper.lidar_to_camera(cam_param, lidar_info) | |
corners3d = np.array(corners3d) | |
color = np.random.random(3) | |
all_pt2d = [] | |
for i, j in [(0, 1), (1, 2), (2, 3), (3, 0), (4, 5), (5, 6), (6, 7), (7, 4), (0, 4), (1, 5), (2, 6), (3, 7)]: | |
line2d = [] | |
for a in np.linspace(0, 1, 30): | |
p3d = corners3d[i] * a + corners3d[j] * (1 - a) | |
valid, p2d = camera.CylinderCameraHelper.camera_to_image(cam_param, p3d) | |
if valid: | |
line2d.append(p2d) | |
if line2d: | |
all_pt2d.append(line2d[0]) | |
all_pt2d.append(line2d[-1]) | |
line2d = np.array(line2d) | |
ax.plot(line2d[:, 0], line2d[:, 1], '-', color=color, lw=1) | |
# draw number | |
if all_pt2d: | |
pt2d = random.choice(all_pt2d) | |
draw_text(ax, pt2d[0], pt2d[1], i_obj, color=color, **text_args) | |
i_obj += 1 | |
df.append({ 'id': i_obj, | |
'type': obj['data']['type'][0], | |
'score': obj['score'], | |
'tag': obj['tag'], | |
'uuid': obj['uuid'], | |
}) | |
return pd.DataFrame(df) | |
if __name__ == "__main__": | |
im_p = '/data1/output/L_fix/bag/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/fisheye_B_dewarp/1602648542800684.360lidar.jpg' | |
t = osp.basename(im_p).split('.')[0] | |
im = cv2.imread(im_p)[..., ::-1] | |
print('im:', im_p) | |
cam_param_p = '/data1/output/L_fix/bag/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/calib_source/cameraB195.json' | |
bag_2d_holder = FramesHolder('/data1/output/L_fix/bag/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/2d_results/Rear195/', 'json') | |
bag_3d_holder = FramesHolder('/data1/output/L_fix/bag/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/msd_score_lidar_ap/', 'pcd.tar.json', delay_thresh=1e8) | |
track_holder = FramesHolder('/data1/output/L_fix/bag/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/msd_score_lidar_ap/', 'pcd.tar.json.new', delay_thresh=1e8) | |
align_holder = FramesHolder('/data1/output/L_fix/align/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/fisheye_B_lidar/', 'pcd.tar.json', delay_thresh=1e8) | |
# camera param | |
with open(cam_param_p) as f: | |
cam_param = json.load(f) | |
R_l2c_fisheye, extrinsic_list = camera.extrinsic(cam_param) | |
cam_param['extrinsic'] = extrinsic_list | |
cylinder_param = camera.CylinderCameraHelper.convert_fisheye_to_cylinder( | |
cam_param, image_h=im.shape[0], image_w=im.shape[1]) | |
M, N = 2, 2 | |
bag2d_p, delay2d = bag_2d_holder.get_nearest_file(t) | |
print('2d:', delay2d, bag2d_p) | |
# -9 /data1/output/L/bag/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/2d_results/Rear195/1602648543900660.json | |
with open(bag2d_p) as f: | |
info2d = json.load(f) | |
df2d = pd.DataFrame(info2d) | |
# show | |
ax = plt.subplot(M, N, 1) | |
ax.imshow(im) | |
ax.set_title('2d: {}'.format(delay2d)) | |
for i, car in enumerate(info2d): | |
color = np.random.random(3) | |
draw_bbox(ax, car, color=color) | |
draw_text(ax, car['left'], car['top'], i, color=color, **text_args) | |
bag3d_p, delay3d = bag_3d_holder.get_nearest_file(t) | |
print('3d:', delay3d, bag3d_p) | |
# 49361 /data1/output/L/bag/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/msd_score_lidar_ap/1602648543950030.pcd.tar.json | |
with open(bag3d_p) as f: | |
info3d = json.load(f) | |
# show | |
ax = plt.subplot(M, N, 2) | |
ax.imshow(im) | |
ax.set_title('3d: {}'.format(delay3d)) | |
df3d = show_lidar(info3d, cylinder_param, ax) | |
track_p, delay_track = track_holder.get_nearest_file(t) | |
print('track:', delay_track, track_p) | |
# 49361 /data1/output/L/bag/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/msd_score_lidar_ap/1602648543950030.pcd.tar.json.new | |
with open(track_p) as f: | |
info_track = json.load(f) | |
ax = plt.subplot(M, N, 3) | |
ax.imshow(im) | |
ax.set_title('tracking: {}'.format(delay_track)) | |
df_track = show_lidar(info_track, cylinder_param, ax) | |
align_p, delay_align = align_holder.get_nearest_file(t) | |
print('align:', delay_align, align_p) | |
# 0 /data1/output/L/align/PLCAP291_event_filter_diff_3d2d_vehicle_20201014-120907_0/fisheye_B_lidar/1602648543900669.pcd.tar.json | |
with open(align_p) as f: | |
info_align = json.load(f) | |
ax = plt.subplot(M, N, 4) | |
ax.imshow(im) | |
ax.set_title('align: {}'.format(delay_align)) | |
df_align = show_lidar(info_align, cylinder_param, ax) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment