Created
June 22, 2021 17:49
-
-
Save noahtren/fc4147105eaba38f19fb2ed4c2a0555b to your computer and use it in GitHub Desktop.
differentiable waveguide forward pass (flax)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@functools.partial(nn.scan, | |
variable_broadcast='params', | |
split_rngs={'params': False}) | |
@nn.remat | |
@nn.compact | |
def __call__(self, carry, t: int): | |
noise, memory, latent_code = carry['noise'], carry['memory'], carry[ | |
'latent_code'] | |
intermediates = {} | |
batch_size = memory.shape[0] | |
use_memory = jax.lax.dynamic_slice( | |
memory, [0, t, 0], [batch_size, self.receptive_field, self.num_modules]) | |
use_noise = jax.lax.dynamic_slice(noise, [t, 0], [1, self.num_modules])[0] | |
# exciter | |
exciter_coeffs = nn.Dense(features=self.num_modules, | |
name='exciter_coeffs')(latent_code) | |
intermediates['exciter_coeffs'] = exciter_coeffs | |
x = exciter_coeffs * use_noise[np.newaxis] | |
# delay | |
delay_logits = nn.Dense(features=self.receptive_field * self.num_modules * | |
self.num_modules, | |
name='delay_logits')(latent_code) | |
delay_logits = np.reshape( | |
delay_logits, | |
[batch_size, self.receptive_field, self.num_modules, self.num_modules]) | |
# rescale delay logits (reduce power) | |
scale_freq = (np.arange(self.receptive_field) / self.receptive_field) | |
delay_logits = delay_logits - scale_freq[np.newaxis, :, np.newaxis, | |
np.newaxis] | |
intermediates['delay_logits'] = delay_logits | |
# delay coeffs | |
delay_coeffs = nn.Dense(features=self.num_modules * self.num_modules, | |
name='delay_coeffs')(latent_code) | |
delay_coeffs = np.reshape(delay_coeffs, | |
[batch_size, self.num_modules, self.num_modules]) | |
delay_coeffs = nn.sigmoid(delay_coeffs) | |
intermediates['delay_coeffs'] = delay_coeffs | |
# generate signal | |
delay_values = nn.softmax(delay_logits, axis=1) | |
duration_values = use_memory[..., np.newaxis] * delay_values | |
delay_lines = np.sum(duration_values, axis=1) | |
delay_lines = delay_lines * delay_coeffs | |
module_delay_inputs = np.mean(delay_lines, axis=1) | |
x = x + module_delay_inputs | |
# nonlinearity | |
pre_activation_coeffs = nn.Dense(features=self.num_modules, | |
name='pre_activation_coeffs')(latent_code) | |
x = np.tanh(x * pre_activation_coeffs) | |
memory = jax.lax.dynamic_update_index_in_dim(memory, x, | |
t + self.receptive_field, 1) | |
return { | |
'noise': noise, | |
'memory': memory, | |
'latent_code': latent_code | |
}, intermediates |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment