Created
June 12, 2020 22:28
-
-
Save noamross/bbc3117112ccddd2ed575fa7e2d8e016 to your computer and use it in GitHub Desktop.
Smooth construct, predict, and plot for random effects with numeric inputs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#' Create a random effect basis with integers rather than factors | |
#' @import mgcv | |
#' @export | |
smooth.construct.re2.smooth.spec <- function (object, data, knots) { | |
if (!is.null(object$id)) | |
stop("random effects don't work with ids.") | |
if(any(sapply(data, is.numeric))) data <- lapply(data, as.factor) ## <-- All I did was this (and below) | |
form <- as.formula(paste("~", paste(object$term, collapse = ":"), | |
"-1")) | |
object$X <- model.matrix(form, data) | |
object$bs.dim <- ncol(object$X) | |
if (inherits(object, "tensor.smooth.spec")) { | |
object$margin <- list() | |
maxd <- maxi <- 0 | |
for (i in 1:object$dim) { | |
form1 <- as.formula(paste("~", object$term[i], "-1")) | |
object$margin[[i]] <- list(X = model.matrix(form1, | |
data), term = object$term[i], form = form1, | |
by = "NA") | |
class(object$margin[[i]]) <- "random.effect2" | |
d <- ncol(object$margin[[i]]$X) | |
if (d > maxd) { | |
maxi <- i | |
maxd <- d | |
} | |
} | |
if (maxi < object$dim) { | |
ns <- object$dim | |
ind <- 1:ns | |
ind[maxi] <- ns | |
ind[ns] <- maxi | |
object$margin <- object$margin[ind] | |
object$term <- rep("", 0) | |
for (i in 1:ns) object$term <- c(object$term, object$margin[[i]]$term) | |
object$label <- paste0(substr(object$label, 1, 2), | |
paste0(object$term, collapse = ","), ")", collapse = "") | |
object$rind <- ind | |
if (!is.null(object$xt$S)) | |
stop("Please put term with most levels last in 're' to avoid spoiling supplied penalties") | |
} | |
} | |
if (is.null(object$xt$S)) { | |
object$S <- list(diag(object$bs.dim)) | |
object$rank <- object$bs.dim | |
} | |
else { | |
object$S <- if (is.list(object$xt$S)) | |
object$xt$S | |
else list(object$xt$S) | |
for (i in 1:length(object$S)) { | |
if (ncol(object$S[[i]]) != object$bs.dim || nrow(object$S[[i]]) != | |
object$bs.dim) | |
stop("supplied S matrices are wrong diminsion") | |
} | |
object$rank <- object$xt$rank | |
} | |
object$null.space.dim <- 0 | |
object$C <- matrix(0, 0, ncol(object$X)) | |
object$form <- form | |
object$side.constrain <- FALSE | |
object$plot.me <- TRUE | |
object$te.ok <- if (inherits(object, "tensor.smooth.spec")) | |
0 | |
else 2 | |
object$random <- TRUE | |
object$noterp <- TRUE | |
class(object) <- if (inherits(object, "tensor.smooth.spec")) | |
c("random.effect2", "tensor.smooth") | |
else "random.effect2" | |
object | |
} | |
#' Predict from a random effect basis with integers rather than factors | |
#' @import mgcv | |
#' @export | |
Predict.matrix.random.effect2 <- function (object, data) { | |
if(any(sapply(data, is.numeric))) data <- lapply(data, as.factor) # <-- And did it again here | |
X <- model.matrix(object$form, model.frame(object$form, data, | |
na.action = na.pass)) | |
X[!is.finite(X)] <- 0 | |
X | |
} | |
#' Plot a numeric random effect | |
#' @import mgcv | |
#' @export | |
plot.random.effect2 <- function (x, P = NULL, data = NULL, label = "", se1.mult = 1, | |
se2.mult = 2, partial.resids = FALSE, rug = TRUE, se = TRUE, | |
scale = -1, n = 100, n2 = 40, n3 = 3, pers = FALSE, theta = 30, | |
phi = 30, jit = FALSE, xlab = NULL, ylab = NULL, main = NULL, | |
ylim = NULL, xlim = NULL, too.far = 0.1, shade = FALSE, | |
shade.col = "gray80", shift = 0, trans = I, by.resids = FALSE, | |
scheme = 0, ...) { | |
# Did nothing here at all, just renamed the function to `....random.effect2` | |
if (is.null(P)) { | |
if (!x$plot.me) | |
return(NULL) | |
else { | |
raw <- data[x$term][[1]] | |
p <- x$last.para - x$first.para + 1 | |
X <- diag(p) | |
if (is.null(xlab)) | |
xlabel <- "Gaussian quantiles" | |
else xlabel <- xlab | |
if (is.null(ylab)) | |
ylabel <- "effects" | |
else ylabel <- ylab | |
if (!is.null(main)) | |
label <- main | |
return(list(X = X, scale = FALSE, se = FALSE, raw = raw, | |
xlab = xlabel, ylab = ylabel, main = label)) | |
} | |
} | |
else { | |
b <- as.numeric(trans(P$fit + shift)) | |
qqnorm(b, main = P$main, xlab = P$xlab, ylab = P$ylab, | |
...) | |
qqline(b) | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment