Last active
March 7, 2016 18:08
-
-
Save nobnak/2dcc0ab99dce5eb88b9d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using UnityEngine; | |
using System.Collections; | |
namespace Gist { | |
/* | |
* A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java. | |
* | |
* Based on example code by Stefan Gustavson ([email protected]). | |
* Optimisations by Peter Eastman ([email protected]). | |
* Better rank ordering method by Stefan Gustavson in 2012. | |
* | |
* This could be speeded up even further, but it's useful as it is. | |
* | |
* Version 2012-03-09 | |
* | |
* This code was placed in the public domain by its original author, | |
* Stefan Gustavson. You may use it as you see fit, but | |
* attribution is appreciated. | |
* | |
*/ | |
public static class SimplexNoise { // Simplex noise in 2D, 3D and 4D | |
private static readonly Grad[] grad3 = new Grad[]{ | |
new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0), | |
new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1), | |
new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)}; | |
private static readonly Grad[] grad4 = new Grad[]{ | |
new Grad(0,1,1,1),new Grad(0,1,1,-1),new Grad(0,1,-1,1),new Grad(0,1,-1,-1), | |
new Grad(0,-1,1,1),new Grad(0,-1,1,-1),new Grad(0,-1,-1,1),new Grad(0,-1,-1,-1), | |
new Grad(1,0,1,1),new Grad(1,0,1,-1),new Grad(1,0,-1,1),new Grad(1,0,-1,-1), | |
new Grad(-1,0,1,1),new Grad(-1,0,1,-1),new Grad(-1,0,-1,1),new Grad(-1,0,-1,-1), | |
new Grad(1,1,0,1),new Grad(1,1,0,-1),new Grad(1,-1,0,1),new Grad(1,-1,0,-1), | |
new Grad(-1,1,0,1),new Grad(-1,1,0,-1),new Grad(-1,-1,0,1),new Grad(-1,-1,0,-1), | |
new Grad(1,1,1,0),new Grad(1,1,-1,0),new Grad(1,-1,1,0),new Grad(1,-1,-1,0), | |
new Grad(-1,1,1,0),new Grad(-1,1,-1,0),new Grad(-1,-1,1,0),new Grad(-1,-1,-1,0)}; | |
private static readonly short[] p = new short[]{151,160,137,91,90,15, | |
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, | |
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, | |
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, | |
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, | |
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, | |
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, | |
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, | |
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, | |
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, | |
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, | |
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, | |
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180}; | |
// To remove the need for index wrapping, double the permutation table length | |
private static readonly short[] perm = new short[512]; | |
private static readonly short[] permMod12 = new short[512]; | |
static SimplexNoise() { | |
for(int i=0; i<512; i++) | |
{ | |
perm[i]=p[i & 255]; | |
permMod12[i] = (short)(perm[i] % 12); | |
} | |
} | |
// Skewing and unskewing factors for 2, 3, and 4 dimensions | |
private const double SQRT3 = 1.73205080757; | |
private const double SQRT5 = 2.2360679775; | |
private const double F2 = 0.5*(SQRT3-1.0); | |
private const double G2 = (3.0-SQRT3)/6.0; | |
private const double F3 = 1.0/3.0; | |
private const double G3 = 1.0/6.0; | |
private const double F4 = (SQRT5-1.0)/4.0; | |
private const double G4 = (5.0-SQRT5)/20.0; | |
// This method is a *lot* faster than using (int)Math.floor(x) | |
private static int fastfloor(double x) { | |
int xi = (int)x; | |
return x<xi ? xi-1 : xi; | |
} | |
private static double dot(Grad g, double x, double y) { | |
return g.x*x + g.y*y; } | |
private static double dot(Grad g, double x, double y, double z) { | |
return g.x*x + g.y*y + g.z*z; } | |
private static double dot(Grad g, double x, double y, double z, double w) { | |
return g.x*x + g.y*y + g.z*z + g.w*w; } | |
// 2D simplex noise | |
public static double Noise(double xin, double yin) { | |
double n0, n1, n2; // Noise contributions from the three corners | |
// Skew the input space to determine which simplex cell we're in | |
double s = (xin+yin)*F2; // Hairy factor for 2D | |
int i = fastfloor(xin+s); | |
int j = fastfloor(yin+s); | |
double t = (i+j)*G2; | |
double X0 = i-t; // Unskew the cell origin back to (x,y) space | |
double Y0 = j-t; | |
double x0 = xin-X0; // The x,y distances from the cell origin | |
double y0 = yin-Y0; | |
// For the 2D case, the simplex shape is an equilateral triangle. | |
// Determine which simplex we are in. | |
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords | |
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) | |
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) | |
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and | |
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where | |
// c = (3-sqrt(3))/6 | |
double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords | |
double y1 = y0 - j1 + G2; | |
double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords | |
double y2 = y0 - 1.0 + 2.0 * G2; | |
// Work out the hashed gradient indices of the three simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int gi0 = permMod12[ii+perm[jj]]; | |
int gi1 = permMod12[ii+i1+perm[jj+j1]]; | |
int gi2 = permMod12[ii+1+perm[jj+1]]; | |
// Calculate the contribution from the three corners | |
double t0 = 0.5 - x0*x0-y0*y0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient | |
} | |
double t1 = 0.5 - x1*x1-y1*y1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad3[gi1], x1, y1); | |
} | |
double t2 = 0.5 - x2*x2-y2*y2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad3[gi2], x2, y2); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to return values in the interval [-1,1]. | |
return 70.0 * (n0 + n1 + n2); | |
} | |
// 3D simplex noise | |
public static double Noise(double xin, double yin, double zin) { | |
double n0, n1, n2, n3; // Noise contributions from the four corners | |
// Skew the input space to determine which simplex cell we're in | |
double s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D | |
int i = fastfloor(xin+s); | |
int j = fastfloor(yin+s); | |
int k = fastfloor(zin+s); | |
double t = (i+j+k)*G3; | |
double X0 = i-t; // Unskew the cell origin back to (x,y,z) space | |
double Y0 = j-t; | |
double Z0 = k-t; | |
double x0 = xin-X0; // The x,y,z distances from the cell origin | |
double y0 = yin-Y0; | |
double z0 = zin-Z0; | |
// For the 3D case, the simplex shape is a slightly irregular tetrahedron. | |
// Determine which simplex we are in. | |
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords | |
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords | |
if(x0>=y0) { | |
if(y0>=z0) | |
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order | |
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order | |
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order | |
} | |
else { // x0<y0 | |
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order | |
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order | |
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order | |
} | |
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), | |
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and | |
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where | |
// c = 1/6. | |
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords | |
double y1 = y0 - j1 + G3; | |
double z1 = z0 - k1 + G3; | |
double x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords | |
double y2 = y0 - j2 + 2.0*G3; | |
double z2 = z0 - k2 + 2.0*G3; | |
double x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords | |
double y3 = y0 - 1.0 + 3.0*G3; | |
double z3 = z0 - 1.0 + 3.0*G3; | |
// Work out the hashed gradient indices of the four simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int kk = k & 255; | |
int gi0 = permMod12[ii+perm[jj+perm[kk]]]; | |
int gi1 = permMod12[ii+i1+perm[jj+j1+perm[kk+k1]]]; | |
int gi2 = permMod12[ii+i2+perm[jj+j2+perm[kk+k2]]]; | |
int gi3 = permMod12[ii+1+perm[jj+1+perm[kk+1]]]; | |
// Calculate the contribution from the four corners | |
double t0 = 0.5 - x0*x0 - y0*y0 - z0*z0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); | |
} | |
double t1 = 0.5 - x1*x1 - y1*y1 - z1*z1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); | |
} | |
double t2 = 0.5 - x2*x2 - y2*y2 - z2*z2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); | |
} | |
double t3 = 0.5 - x3*x3 - y3*y3 - z3*z3; | |
if(t3<0) n3 = 0.0; | |
else { | |
t3 *= t3; | |
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to stay just inside [-1,1] | |
return 32.0*(n0 + n1 + n2 + n3); | |
} | |
// 4D simplex noise, better simplex rank ordering method 2012-03-09 | |
public static double Noise(double x, double y, double z, double w) { | |
double n0, n1, n2, n3, n4; // Noise contributions from the five corners | |
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in | |
double s = (x + y + z + w) * F4; // Factor for 4D skewing | |
int i = fastfloor(x + s); | |
int j = fastfloor(y + s); | |
int k = fastfloor(z + s); | |
int l = fastfloor(w + s); | |
double t = (i + j + k + l) * G4; // Factor for 4D unskewing | |
double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space | |
double Y0 = j - t; | |
double Z0 = k - t; | |
double W0 = l - t; | |
double x0 = x - X0; // The x,y,z,w distances from the cell origin | |
double y0 = y - Y0; | |
double z0 = z - Z0; | |
double w0 = w - W0; | |
// For the 4D case, the simplex is a 4D shape I won't even try to describe. | |
// To find out which of the 24 possible simplices we're in, we need to | |
// determine the magnitude ordering of x0, y0, z0 and w0. | |
// Six pair-wise comparisons are performed between each possible pair | |
// of the four coordinates, and the results are used to rank the numbers. | |
int rankx = 0; | |
int ranky = 0; | |
int rankz = 0; | |
int rankw = 0; | |
if(x0 > y0) rankx++; else ranky++; | |
if(x0 > z0) rankx++; else rankz++; | |
if(x0 > w0) rankx++; else rankw++; | |
if(y0 > z0) ranky++; else rankz++; | |
if(y0 > w0) ranky++; else rankw++; | |
if(z0 > w0) rankz++; else rankw++; | |
int i1, j1, k1, l1; // The integer offsets for the second simplex corner | |
int i2, j2, k2, l2; // The integer offsets for the third simplex corner | |
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner | |
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. | |
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w | |
// impossible. Only the 24 indices which have non-zero entries make any sense. | |
// We use a thresholding to set the coordinates in turn from the largest magnitude. | |
// Rank 3 denotes the largest coordinate. | |
i1 = rankx >= 3 ? 1 : 0; | |
j1 = ranky >= 3 ? 1 : 0; | |
k1 = rankz >= 3 ? 1 : 0; | |
l1 = rankw >= 3 ? 1 : 0; | |
// Rank 2 denotes the second largest coordinate. | |
i2 = rankx >= 2 ? 1 : 0; | |
j2 = ranky >= 2 ? 1 : 0; | |
k2 = rankz >= 2 ? 1 : 0; | |
l2 = rankw >= 2 ? 1 : 0; | |
// Rank 1 denotes the second smallest coordinate. | |
i3 = rankx >= 1 ? 1 : 0; | |
j3 = ranky >= 1 ? 1 : 0; | |
k3 = rankz >= 1 ? 1 : 0; | |
l3 = rankw >= 1 ? 1 : 0; | |
// The fifth corner has all coordinate offsets = 1, so no need to compute that. | |
double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords | |
double y1 = y0 - j1 + G4; | |
double z1 = z0 - k1 + G4; | |
double w1 = w0 - l1 + G4; | |
double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords | |
double y2 = y0 - j2 + 2.0*G4; | |
double z2 = z0 - k2 + 2.0*G4; | |
double w2 = w0 - l2 + 2.0*G4; | |
double x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords | |
double y3 = y0 - j3 + 3.0*G4; | |
double z3 = z0 - k3 + 3.0*G4; | |
double w3 = w0 - l3 + 3.0*G4; | |
double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords | |
double y4 = y0 - 1.0 + 4.0*G4; | |
double z4 = z0 - 1.0 + 4.0*G4; | |
double w4 = w0 - 1.0 + 4.0*G4; | |
// Work out the hashed gradient indices of the five simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int kk = k & 255; | |
int ll = l & 255; | |
int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32; | |
int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32; | |
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32; | |
int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32; | |
int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32; | |
// Calculate the contribution from the five corners | |
double t0 = 0.5 - x0*x0 - y0*y0 - z0*z0 - w0*w0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); | |
} | |
double t1 = 0.5 - x1*x1 - y1*y1 - z1*z1 - w1*w1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); | |
} | |
double t2 = 0.5 - x2*x2 - y2*y2 - z2*z2 - w2*w2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); | |
} | |
double t3 = 0.5 - x3*x3 - y3*y3 - z3*z3 - w3*w3; | |
if(t3<0) n3 = 0.0; | |
else { | |
t3 *= t3; | |
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); | |
} | |
double t4 = 0.5 - x4*x4 - y4*y4 - z4*z4 - w4*w4; | |
if(t4<0) n4 = 0.0; | |
else { | |
t4 *= t4; | |
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); | |
} | |
// Sum up and scale the result to cover the range [-1,1] | |
return 27.0 * (n0 + n1 + n2 + n3 + n4); | |
} | |
// Inner class to speed upp gradient computations | |
// (array access is a lot slower than member access) | |
public struct Grad { | |
public double x, y, z, w; | |
public Grad(double x, double y, double z) : this(x, y, z, 0) {} | |
public Grad(double x, double y, double z, double w) | |
{ | |
this.x = x; | |
this.y = y; | |
this.z = z; | |
this.w = w; | |
} | |
} | |
} | |
} | |
* Optimisations by Peter Eastman ([email protected]). | |
* Better rank ordering method by Stefan Gustavson in 2012. | |
* | |
* This could be speeded up even further, but it's useful as it is. | |
* | |
* Version 2012-03-09 | |
* | |
* This code was placed in the public domain by its original author, | |
* Stefan Gustavson. You may use it as you see fit, but | |
* attribution is appreciated. | |
* | |
*/ | |
public static class SimplexNoise { // Simplex noise in 2D, 3D and 4D | |
private static readonly Grad[] grad3 = new Grad[]{ | |
new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0), | |
new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1), | |
new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)}; | |
private static readonly Grad[] grad4 = new Grad[]{ | |
new Grad(0,1,1,1),new Grad(0,1,1,-1),new Grad(0,1,-1,1),new Grad(0,1,-1,-1), | |
new Grad(0,-1,1,1),new Grad(0,-1,1,-1),new Grad(0,-1,-1,1),new Grad(0,-1,-1,-1), | |
new Grad(1,0,1,1),new Grad(1,0,1,-1),new Grad(1,0,-1,1),new Grad(1,0,-1,-1), | |
new Grad(-1,0,1,1),new Grad(-1,0,1,-1),new Grad(-1,0,-1,1),new Grad(-1,0,-1,-1), | |
new Grad(1,1,0,1),new Grad(1,1,0,-1),new Grad(1,-1,0,1),new Grad(1,-1,0,-1), | |
new Grad(-1,1,0,1),new Grad(-1,1,0,-1),new Grad(-1,-1,0,1),new Grad(-1,-1,0,-1), | |
new Grad(1,1,1,0),new Grad(1,1,-1,0),new Grad(1,-1,1,0),new Grad(1,-1,-1,0), | |
new Grad(-1,1,1,0),new Grad(-1,1,-1,0),new Grad(-1,-1,1,0),new Grad(-1,-1,-1,0)}; | |
private static readonly short[] p = new short[]{151,160,137,91,90,15, | |
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, | |
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, | |
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, | |
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, | |
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, | |
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, | |
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, | |
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, | |
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, | |
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, | |
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, | |
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180}; | |
// To remove the need for index wrapping, double the permutation table length | |
private static readonly short[] perm = new short[512]; | |
private static readonly short[] permMod12 = new short[512]; | |
static SimplexNoise() { | |
for(int i=0; i<512; i++) | |
{ | |
perm[i]=p[i & 255]; | |
permMod12[i] = (short)(perm[i] % 12); | |
} | |
} | |
// Skewing and unskewing factors for 2, 3, and 4 dimensions | |
private const double SQRT3 = 1.73205080757; | |
private const double SQRT5 = 2.2360679775; | |
private const double F2 = 0.5*(SQRT3-1.0); | |
private const double G2 = (3.0-SQRT3)/6.0; | |
private const double F3 = 1.0/3.0; | |
private const double G3 = 1.0/6.0; | |
private const double F4 = (SQRT5-1.0)/4.0; | |
private const double G4 = (5.0-SQRT5)/20.0; | |
// This method is a *lot* faster than using (int)Math.floor(x) | |
private static int fastfloor(double x) { | |
int xi = (int)x; | |
return x<xi ? xi-1 : xi; | |
} | |
private static double dot(Grad g, double x, double y) { | |
return g.x*x + g.y*y; } | |
private static double dot(Grad g, double x, double y, double z) { | |
return g.x*x + g.y*y + g.z*z; } | |
private static double dot(Grad g, double x, double y, double z, double w) { | |
return g.x*x + g.y*y + g.z*z + g.w*w; } | |
// 2D simplex noise | |
public static double Noise(double xin, double yin) { | |
double n0, n1, n2; // Noise contributions from the three corners | |
// Skew the input space to determine which simplex cell we're in | |
double s = (xin+yin)*F2; // Hairy factor for 2D | |
int i = fastfloor(xin+s); | |
int j = fastfloor(yin+s); | |
double t = (i+j)*G2; | |
double X0 = i-t; // Unskew the cell origin back to (x,y) space | |
double Y0 = j-t; | |
double x0 = xin-X0; // The x,y distances from the cell origin | |
double y0 = yin-Y0; | |
// For the 2D case, the simplex shape is an equilateral triangle. | |
// Determine which simplex we are in. | |
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords | |
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) | |
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) | |
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and | |
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where | |
// c = (3-sqrt(3))/6 | |
double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords | |
double y1 = y0 - j1 + G2; | |
double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords | |
double y2 = y0 - 1.0 + 2.0 * G2; | |
// Work out the hashed gradient indices of the three simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int gi0 = permMod12[ii+perm[jj]]; | |
int gi1 = permMod12[ii+i1+perm[jj+j1]]; | |
int gi2 = permMod12[ii+1+perm[jj+1]]; | |
// Calculate the contribution from the three corners | |
double t0 = 0.5 - x0*x0-y0*y0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient | |
} | |
double t1 = 0.5 - x1*x1-y1*y1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad3[gi1], x1, y1); | |
} | |
double t2 = 0.5 - x2*x2-y2*y2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad3[gi2], x2, y2); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to return values in the interval [-1,1]. | |
return 70.0 * (n0 + n1 + n2); | |
} | |
// 3D simplex noise | |
public static double Noise(double xin, double yin, double zin) { | |
double n0, n1, n2, n3; // Noise contributions from the four corners | |
// Skew the input space to determine which simplex cell we're in | |
double s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D | |
int i = fastfloor(xin+s); | |
int j = fastfloor(yin+s); | |
int k = fastfloor(zin+s); | |
double t = (i+j+k)*G3; | |
double X0 = i-t; // Unskew the cell origin back to (x,y,z) space | |
double Y0 = j-t; | |
double Z0 = k-t; | |
double x0 = xin-X0; // The x,y,z distances from the cell origin | |
double y0 = yin-Y0; | |
double z0 = zin-Z0; | |
// For the 3D case, the simplex shape is a slightly irregular tetrahedron. | |
// Determine which simplex we are in. | |
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords | |
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords | |
if(x0>=y0) { | |
if(y0>=z0) | |
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order | |
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order | |
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order | |
} | |
else { // x0<y0 | |
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order | |
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order | |
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order | |
} | |
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), | |
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and | |
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where | |
// c = 1/6. | |
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords | |
double y1 = y0 - j1 + G3; | |
double z1 = z0 - k1 + G3; | |
double x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords | |
double y2 = y0 - j2 + 2.0*G3; | |
double z2 = z0 - k2 + 2.0*G3; | |
double x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords | |
double y3 = y0 - 1.0 + 3.0*G3; | |
double z3 = z0 - 1.0 + 3.0*G3; | |
// Work out the hashed gradient indices of the four simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int kk = k & 255; | |
int gi0 = permMod12[ii+perm[jj+perm[kk]]]; | |
int gi1 = permMod12[ii+i1+perm[jj+j1+perm[kk+k1]]]; | |
int gi2 = permMod12[ii+i2+perm[jj+j2+perm[kk+k2]]]; | |
int gi3 = permMod12[ii+1+perm[jj+1+perm[kk+1]]]; | |
// Calculate the contribution from the four corners | |
double t0 = 0.5 - x0*x0 - y0*y0 - z0*z0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); | |
} | |
double t1 = 0.5 - x1*x1 - y1*y1 - z1*z1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); | |
} | |
double t2 = 0.5 - x2*x2 - y2*y2 - z2*z2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); | |
} | |
double t3 = 0.5 - x3*x3 - y3*y3 - z3*z3; | |
if(t3<0) n3 = 0.0; | |
else { | |
t3 *= t3; | |
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to stay just inside [-1,1] | |
return 32.0*(n0 + n1 + n2 + n3); | |
} | |
// 4D simplex noise, better simplex rank ordering method 2012-03-09 | |
public static double Noise(double x, double y, double z, double w) { | |
double n0, n1, n2, n3, n4; // Noise contributions from the five corners | |
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in | |
double s = (x + y + z + w) * F4; // Factor for 4D skewing | |
int i = fastfloor(x + s); | |
int j = fastfloor(y + s); | |
int k = fastfloor(z + s); | |
int l = fastfloor(w + s); | |
double t = (i + j + k + l) * G4; // Factor for 4D unskewing | |
double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space | |
double Y0 = j - t; | |
double Z0 = k - t; | |
double W0 = l - t; | |
double x0 = x - X0; // The x,y,z,w distances from the cell origin | |
double y0 = y - Y0; | |
double z0 = z - Z0; | |
double w0 = w - W0; | |
// For the 4D case, the simplex is a 4D shape I won't even try to describe. | |
// To find out which of the 24 possible simplices we're in, we need to | |
// determine the magnitude ordering of x0, y0, z0 and w0. | |
// Six pair-wise comparisons are performed between each possible pair | |
// of the four coordinates, and the results are used to rank the numbers. | |
int rankx = 0; | |
int ranky = 0; | |
int rankz = 0; | |
int rankw = 0; | |
if(x0 > y0) rankx++; else ranky++; | |
if(x0 > z0) rankx++; else rankz++; | |
if(x0 > w0) rankx++; else rankw++; | |
if(y0 > z0) ranky++; else rankz++; | |
if(y0 > w0) ranky++; else rankw++; | |
if(z0 > w0) rankz++; else rankw++; | |
int i1, j1, k1, l1; // The integer offsets for the second simplex corner | |
int i2, j2, k2, l2; // The integer offsets for the third simplex corner | |
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner | |
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. | |
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w | |
// impossible. Only the 24 indices which have non-zero entries make any sense. | |
// We use a thresholding to set the coordinates in turn from the largest magnitude. | |
// Rank 3 denotes the largest coordinate. | |
i1 = rankx >= 3 ? 1 : 0; | |
j1 = ranky >= 3 ? 1 : 0; | |
k1 = rankz >= 3 ? 1 : 0; | |
l1 = rankw >= 3 ? 1 : 0; | |
// Rank 2 denotes the second largest coordinate. | |
i2 = rankx >= 2 ? 1 : 0; | |
j2 = ranky >= 2 ? 1 : 0; | |
k2 = rankz >= 2 ? 1 : 0; | |
l2 = rankw >= 2 ? 1 : 0; | |
// Rank 1 denotes the second smallest coordinate. | |
i3 = rankx >= 1 ? 1 : 0; | |
j3 = ranky >= 1 ? 1 : 0; | |
k3 = rankz >= 1 ? 1 : 0; | |
l3 = rankw >= 1 ? 1 : 0; | |
// The fifth corner has all coordinate offsets = 1, so no need to compute that. | |
double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords | |
double y1 = y0 - j1 + G4; | |
double z1 = z0 - k1 + G4; | |
double w1 = w0 - l1 + G4; | |
double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords | |
double y2 = y0 - j2 + 2.0*G4; | |
double z2 = z0 - k2 + 2.0*G4; | |
double w2 = w0 - l2 + 2.0*G4; | |
double x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords | |
double y3 = y0 - j3 + 3.0*G4; | |
double z3 = z0 - k3 + 3.0*G4; | |
double w3 = w0 - l3 + 3.0*G4; | |
double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords | |
double y4 = y0 - 1.0 + 4.0*G4; | |
double z4 = z0 - 1.0 + 4.0*G4; | |
double w4 = w0 - 1.0 + 4.0*G4; | |
// Work out the hashed gradient indices of the five simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int kk = k & 255; | |
int ll = l & 255; | |
int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32; | |
int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32; | |
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32; | |
int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32; | |
int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32; | |
// Calculate the contribution from the five corners | |
double t0 = 0.5 - x0*x0 - y0*y0 - z0*z0 - w0*w0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); | |
} | |
double t1 = 0.5 - x1*x1 - y1*y1 - z1*z1 - w1*w1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); | |
} | |
double t2 = 0.5 - x2*x2 - y2*y2 - z2*z2 - w2*w2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); | |
} | |
double t3 = 0.5 - x3*x3 - y3*y3 - z3*z3 - w3*w3; | |
if(t3<0) n3 = 0.0; | |
else { | |
t3 *= t3; | |
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); | |
} | |
double t4 = 0.5 - x4*x4 - y4*y4 - z4*z4 - w4*w4; | |
if(t4<0) n4 = 0.0; | |
else { | |
t4 *= t4; | |
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); | |
} | |
// Sum up and scale the result to cover the range [-1,1] | |
return 27.0 * (n0 + n1 + n2 + n3 + n4); | |
} | |
// Inner class to speed upp gradient computations | |
// (array access is a lot slower than member access) | |
public struct Grad { | |
public double x, y, z, w; | |
public Grad(double x, double y, double z) : this(x, y, z, 0) {} | |
public Grad(double x, double y, double z, double w) | |
{ | |
this.x = x; | |
this.y = y; | |
this.z = z; | |
this.w = w; | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment