Last active
September 6, 2023 14:26
-
-
Save nocollier/2090d8de514a41631fafcd0199307dd9 to your computer and use it in GitHub Desktop.
ESGF Globus query
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import re | |
import pandas as pd | |
from globus_sdk import SearchClient | |
from globus_sdk.response import GlobusHTTPResponse | |
# the Globus uuid of the test ESGF2 Argonne index | |
INDEX_ID = "d927e2d9-ccdb-48e4-b05d-adbc3d97bbc5" | |
def response_to_dataframe(response: GlobusHTTPResponse, pattern: str) -> pd.DataFrame: | |
"""Return the dataset entries from the response of a Globus search.""" | |
df = [] | |
for g in response.get("gmeta"): | |
assert len(g["entries"]) == 1 # A check on the assumption of a single entry | |
if g["entries"][0]["entry_id"] != "dataset": # Manually remove files | |
continue | |
m = re.search(pattern, g["subject"]) | |
if m: | |
df.append(m.groupdict()) | |
df = pd.DataFrame(df) | |
return df | |
def get_dataset_pattern() -> str: | |
"""Return the Globus subject re pattern for datasets.""" | |
COLUMNS = [ | |
"mip_era", | |
"activity_id", | |
"institution_id", | |
"source_id", | |
"experiment_id", | |
"member_id", | |
"table_id", | |
"variable_id", | |
"grid_label", | |
"version", | |
"data_node", | |
] | |
pattern = "\.".join([f"(?P<{c}>\S[^.|]+)" for c in COLUMNS[:-1]]) | |
pattern += f"\|(?P<{COLUMNS[-1]}>\S+)" | |
return pattern | |
# specify a search like we are used to | |
SEARCH = { | |
"activity_id": "CMIP", | |
"experiment_id": "historical", | |
"source_id": "CESM2", | |
"variable_id": "tas", | |
"member_id": "r1i1p1f1", | |
} | |
# try using SearchClient.search() | |
query = 'type: "Dataset" ' | |
query += " ".join(f'{key}: "{val}"' for (key, val) in SEARCH.items()) | |
query = query.replace('" ', '" AND ') | |
client = SearchClient() | |
result = client.search(INDEX_ID, query, limit=100, advanced=True) | |
df = response_to_dataframe(result, get_dataset_pattern()) | |
# what did I get out of this search? | |
print(query) | |
print(f"{len(df)=}") | |
print(f"{len(result.get('gmeta'))=}") | |
print(f"{result['total']=}") | |
for key in SEARCH.keys(): | |
if key == "type": | |
continue | |
print(f"{key}: {df[key].unique()}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment