Created
February 6, 2024 05:43
-
-
Save noczero/9708f62baedbaeb2360a823e8eb819b8 to your computer and use it in GitHub Desktop.
Clustering using Gaussian Mixture Model with Multi Label Output
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'rumale' | |
require 'rumale/dataset' | |
p "Clustering using Gaussian Mixture Model with Multi Label Output" | |
class MultiLabelGMM < Rumale::Clustering::GaussianMixture | |
def initialize(n_clusters: 8, init: 'k-means++', covariance_type: 'diag', | |
max_iter: 50, tol: 1.0e-4, reg_covar: 1.0e-6, random_seed: nil) | |
super() | |
@params = { | |
n_clusters: n_clusters, | |
init: (init == 'random' ? 'random' : 'k-means++'), | |
covariance_type: (covariance_type == 'full' ? 'full' : 'diag'), | |
max_iter: max_iter, | |
tol: tol, | |
reg_covar: reg_covar, | |
random_seed: random_seed || srand | |
} | |
end | |
def fit_predict_probability(x) | |
check_enable_linalg('fit_predict_probability') | |
x = ::Rumale::Validation.check_convert_sample_array(x) | |
fit(x) | |
predict_probability(x) | |
end | |
def predict_probability(x) | |
check_enable_linalg('fit_predict_probability') | |
x = ::Rumale::Validation.check_convert_sample_array(x) | |
@memberships = calc_memberships(x, @weights, @means, @covariances, @params[:covariance_type]) | |
@memberships | |
end | |
def multi_labels(threshold: 0.5) | |
filtered = @memberships.gt(threshold) | |
rows, _ = filtered.shape | |
labels = [] | |
rows.times do |i| | |
labels << filtered[i, true].where.to_a | |
end | |
labels | |
end | |
end | |
def three_clusters_dataset | |
centers = Numo::DFloat[[1, -1], [1, 1], [0, 1]] | |
Rumale::Dataset.make_blobs(20, centers: centers, cluster_std: 1.0, random_seed: 1) | |
end | |
# make random data points | |
X = three_clusters_dataset | |
# create GMM | |
analyzer = MultiLabelGMM.new(n_clusters: 3, max_iter: 50) | |
analyzer.fit(X[0]) | |
membership_probability = analyzer.predict_probability(X[0]) | |
# get labels, set threshold | |
labels = analyzer.multi_labels(threshold: 0.01) | |
p "Predict with Multiple Labels: #{labels}" | |
p "Predict probability: #{membership_probability.to_a}" | |
# OUTPUT | |
# "Clustering using Gaussian Mixture Model with Multi Label Output" | |
# "Predict with Multiple Labels: [[0], [0], [0, 2], [0, 1], [2], [0], [0], [1], [1], [1], [0], [0, 2], [0, 2], [2], [0], [0, 2], [0], [0, 2], [0], [0, 2]]" | |
# "Predict probability: [[0.9999300578542513, 6.994209164666061e-05, 5.410205012670883e-11], [0.999999902557336, 9.74426640572274e-08, 3.550966462139485e-24], [0.9648774261105081, 2.5175367380437922e-05, 0.03509739852211158], [0.0870845586267286, 0.9129154413732714, 2.764361458641714e-60], [7.399786459326608e-05, 0.00028824722729036106, 0.9996377549081163], [0.9999999983440929, 1.6559071223563116e-09, 4.499261874956609e-40], [0.9999999999987949, 1.2052216872414945e-12, 1.8678536160401503e-79], [0.0009811012716997099, 0.9990188987283003, 5.978741885682614e-22], [0.0090431166759968, 0.9909568833240032, 1.9338083568360927e-19], [0.0009959081369024156, 0.9990040918630976, 1.0584495703556302e-52], [0.9996007892020022, 7.054129216690488e-16, 0.000399210797997221], [0.8789222240661732, 1.2729189520984938e-14, 0.12107777593381416], [0.054773691389011274, 3.683030907264873e-07, 0.945225940307898], [0.0021937520207057633, 0.00717041854029634, 0.990635829438998], [1.0, 1.9790293999282198e-20, 2.5566206326303784e-61], [0.07888761826423746, 6.779761648761619e-31, 0.9211123817357626], [0.9999577847322032, 4.2215267796756885e-05, 1.2249438474291322e-66], [0.19317347420287334, 7.610608522876177e-13, 0.8068265257963656], [0.9999999998728679, 2.3536888671005802e-18, 1.2713204820920964e-10], [0.03217656138888003, 5.476684853388209e-06, 0.9678179619262666]]" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment