Created
August 22, 2017 07:29
-
-
Save noio/ac64dcdaf51104677cd628189c98299e to your computer and use it in GitHub Desktop.
detecting hands
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
import warnings | |
import random | |
import numpy as np | |
import pandas as pd | |
from keras import backend as K | |
from keras.models import Sequential | |
from keras.layers import * | |
from keras.optimizers import Adam | |
from keras.preprocessing import image | |
from keras.callbacks import History, Callback | |
module_path = os.path.abspath(os.path.join('..')) | |
if module_path not in sys.path: | |
sys.path.append(module_path) | |
from vgg16 import VGG16, add_conv_block, VGG_preprocess | |
from ipywidgets import interact | |
from matplotlib import pyplot as plt | |
%matplotlib notebook | |
data_dir = "../../hands_data/hands_motion_mini" | |
INPUT_DIMENSIONS = (3,240,426) | |
# data_dir = "../../hands_data/outdoor_1_cropped" | |
# INPUT_DIMENSIONS = (3,360,640) | |
def HandTracker(weights_file = None): | |
model = Sequential() | |
model.add(Lambda(VGG_preprocess, input_shape=INPUT_DIMENSIONS, output_shape=INPUT_DIMENSIONS)) | |
# with all lines this is the full VGG model | |
add_conv_block(model, 2, 64) | |
add_conv_block(model, 2, 128) | |
# add_conv_block(model, 3, 256) | |
# add_conv_block(model, 3, 512) | |
# add_conv_block(model, 3, 512) | |
vgg = VGG16() | |
for model_layer, vgg_layer in zip(model.layers, vgg.layers): | |
model_layer.set_weights(vgg_layer.get_weights()) | |
model_layer.trainable = False | |
fils = 512 | |
model.add(ZeroPadding2D((1,1))) | |
model.add(Conv2D(fils, (3, 3), activation='relu')) | |
model.add(ZeroPadding2D((1,1))) | |
model.add(Conv2D(fils, (3, 3), activation='relu')) | |
model.add(ZeroPadding2D((1,1))) | |
model.add(Conv2D(fils, (3, 3), activation='relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2))) | |
# model.add(ZeroPadding2D((1,1))) | |
# model.add(Conv2D(512, (3, 3), activation='relu')) | |
# model.add(ZeroPadding2D((1,1))) | |
# model.add(Conv2D(512, (3, 3), activation='relu')) | |
# model.add(ZeroPadding2D((1,1))) | |
# model.add(Conv2D(512, (3, 3), activation='relu')) | |
# model.add(MaxPooling2D((2,2), strides=(2,2))) | |
model.add(Conv2D(1, (1,1))) | |
model.compile(optimizer=Adam(lr=0.001), loss=mean_squared_error_modified, metrics=['accuracy']) | |
return model | |
model = HandTracker() | |
BATCH_SIZE = 32 | |
imageDataGen = image.ImageDataGenerator( | |
horizontal_flip=True, | |
# zoom_range=(2.0,4.0), | |
# width_shift_range=0.2, | |
# height_shift_range=0.2, | |
fill_mode='constant' | |
) | |
net_output_size = model.layers[-1].output_shape[2:] | |
frames = imageDataGen.flow_from_directory(data_dir + "/frames", | |
batch_size=BATCH_SIZE, | |
target_size=INPUT_DIMENSIONS[1:], | |
shuffle=False, seed=0) | |
targets = imageDataGen.flow_from_directory(data_dir + "/hand", | |
batch_size=BATCH_SIZE, | |
target_size=net_output_size, | |
color_mode='grayscale', | |
shuffle=False, seed=0) | |
def zip_batches(input_batches, output_batches): | |
if not isinstance(input_batches, list): | |
input_batches = [input_batches] | |
if not isinstance(output_batches, list): | |
output_batches = [output_batches] | |
while True: | |
yield ([next(b)[0] for b in input_batches], [next(b)[0] for b in output_batches]) | |
training_stream = zip_batches(frames, targets) | |
model.fit_generator(training_stream, (frames.samples // frames.batch_size) + 1, epochs=8) | |
model.save_weights("model_weights.h5") | |
(inputs, targets) = next(training_stream) | |
predicted = model.predict(inputs[0]) | |
plt.ion() | |
fig = plt.figure() | |
top = fig.add_subplot(3,1,1) | |
mid = fig.add_subplot(3,1,2) | |
bottom = fig.add_subplot(3,1,3) | |
def vis(im, fil): | |
pred_im = predicted[im].transpose(1,2,0).squeeze() | |
top.imshow(pred_im, vmin=0, vmax=255) | |
inp_im = inputs[0][im,:,:,:].transpose((1,2,0)) | |
mid.imshow(inp_im) | |
target_im = targets[0][im].transpose(1,2,0).squeeze() | |
bottom.imshow(target_im, vmin=0, vmax=255) | |
plt.show() | |
interact(vis, im=(0,BATCH_SIZE-1), fil=(0,255)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
its not working..! pls upload all required model, library links as well.