Created
          July 1, 2020 10:02 
        
      - 
      
 - 
        
Save nonlinearjunkie/909b7da2d7c81d27074ba70460b2b9d8 to your computer and use it in GitHub Desktop.  
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | model=Sequential() | |
| # Conv-layer-1 | |
| model.add(Conv2D(32,(3,3),input_shape=(128,128,1))) | |
| model.add(BatchNormalization()) | |
| model.add(Activation('relu')) | |
| model.add(MaxPooling2D(pool_size=(2,2))) | |
| model.add(Dropout(0.3)) | |
| # Conv-layer-2 | |
| model.add(Conv2D(128,(5,5))) | |
| model.add(BatchNormalization()) | |
| model.add(Activation('relu')) | |
| model.add(MaxPooling2D(pool_size=(2,2))) | |
| model.add(Dropout(0.3)) | |
| # Conv-layer-3 | |
| model.add(Conv2D(512,(3,3))) | |
| model.add(BatchNormalization()) | |
| model.add(Activation('relu')) | |
| model.add(MaxPooling2D(pool_size=(2,2))) | |
| model.add(Dropout(0.3)) | |
| # Conv-layer-4 | |
| model.add(Conv2D(512,(3,3))) | |
| model.add(BatchNormalization()) | |
| model.add(Activation('relu')) | |
| model.add(MaxPooling2D(pool_size=(2,2))) | |
| model.add(Dropout(0.3)) | |
| # Flattening | |
| model.add(Flatten()) | |
| # Fully connected layer 1st layer | |
| model.add(Dense(128)) | |
| model.add(BatchNormalization()) | |
| model.add(Activation('relu')) | |
| model.add(Dropout(0.3)) | |
| # Fully connected layer 2nd layer | |
| model.add(Dense(128)) | |
| model.add(BatchNormalization()) | |
| model.add(Activation('relu')) | |
| model.add(Dropout(0.3)) | |
| model.add(Dense(7, activation='softmax')) | |
| opt = Adam(lr=0.0005) | |
| model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) | |
| epochs = 10 | |
| steps_per_epoch = train_generator.n//train_generator.batch_size | |
| validation_steps = validation_generator.n//validation_generator.batch_size | |
| history = model.fit( | |
| x=train_generator, | |
| steps_per_epoch=steps_per_epoch, | |
| epochs=epochs, | |
| validation_data = validation_generator, | |
| validation_steps = validation_steps, | |
| ) | |
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment