Created
July 1, 2020 10:32
-
-
Save nonlinearjunkie/cfa574e6e66d2de475c147324f88db0a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
base_model = tf.keras.applications.MobileNetV2(input_shape=(224,224,3), | |
alpha=1.0, | |
include_top=False, | |
weights="imagenet") | |
for layer in base_model.layers: | |
layer.trainable = False | |
model_transfered_1=Sequential() | |
model_transfered_1.add(base_model) | |
# Flattening | |
model_transfered_1.add(Flatten()) | |
# Fully connected layer 1st layer | |
model_transfered_1.add(Dense(32)) | |
model_transfered_1.add(BatchNormalization()) | |
model_transfered_1.add(Activation('relu')) | |
model_transfered_1.add(Dropout(0.4)) | |
# Fully connected layer 2nd layer | |
model_transfered_1.add(Dense(32)) | |
model_transfered_1.add(BatchNormalization()) | |
model_transfered_1.add(Activation('relu')) | |
model_transfered_1.add(Dropout(0.4)) | |
model_transfered_1.add(Dense(7, activation='softmax')) | |
model_transfered_1.compile(optimizer=Adam(lr=0.0005), | |
loss='categorical_crossentropy', metrics=['categorical_accuracy']) | |
epochs = 10 | |
steps_per_epoch = train_generator.n//train_generator.batch_size | |
validation_steps = validation_generator.n//validation_generator.batch_size | |
callbacks = [PlotLossesKerasTF(), checkpoint, reduce_lr] | |
history = model_transfered_1.fit( | |
x=train_generator, | |
steps_per_epoch=steps_per_epoch, | |
epochs=epochs, | |
validation_data = validation_generator, | |
validation_steps = validation_steps, | |
shuffle=True | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment