Last active
March 4, 2023 06:05
-
-
Save norabelrose/21186b1c72cc63e6e58f0c7d211979e3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from itertools import product | |
| from scipy.optimize import curve_fit | |
| from typing import NamedTuple, Sequence | |
| import numpy as np | |
| class Break(NamedTuple): | |
| c: float | |
| d: float | |
| f: float | |
| class BNSL(NamedTuple): | |
| a: float | |
| b: float | |
| c0: float | |
| breaks: Sequence[Break] | |
| @classmethod | |
| def fit(cls, x, y, num_breaks: int = 1): | |
| assert np.all(x > 0) and np.all(y > 0) | |
| q = np.linspace(0, 1, 5)[1:-1] | |
| x_quantiles = np.log(np.quantile(x, q)) | |
| y_quantiles = np.quantile(y, (0.0, 0.25, 0.5, 0.75, 1.0)) | |
| # Test grid of initializations | |
| best_loss = np.inf | |
| best_p = None | |
| exp_grid = np.linspace(0.1, 0.99, 5) | |
| log_grid = np.linspace(1, 10, 10) | |
| break_grid = (exp_grid, x_quantiles, exp_grid) * num_breaks | |
| for params in product(y_quantiles, log_grid, exp_grid, *break_grid): | |
| loss = cls.from_params(params).loss(x, y) | |
| if best_p is None or loss < best_loss: | |
| best_loss = loss | |
| best_p = params | |
| def fn(x, *p): | |
| y_pred = cls.from_params(p)(x) | |
| return np.log(y_pred) | |
| break_lb = [0, np.log(x.min()), 0] * num_breaks | |
| break_ub = [1, np.log(x.max()), np.inf] * num_breaks | |
| p_star, *_ = curve_fit( | |
| fn, x, np.log(y), best_p, | |
| bounds=( | |
| np.array([-np.inf, -np.inf, 0] + break_lb), | |
| np.array([np.inf, np.inf, 1] + break_ub) | |
| ), | |
| maxfev=None, | |
| ) | |
| return cls.from_params(p_star) | |
| @classmethod | |
| def from_params(cls, params): | |
| a, log_b, c, *break_params = params | |
| breaks = [] | |
| for i in range(0, len(break_params), 3): | |
| c_i, log_d_i, f_i = break_params[i:i+3] | |
| breaks.append( | |
| Break(c_i, np.exp(log_d_i), f_i) | |
| ) | |
| return cls(a, np.exp(log_b), c, breaks) | |
| def to_params(self): | |
| break_params = [] | |
| for break_ in self.breaks: | |
| break_params.extend([ | |
| break_.c, | |
| np.log(break_.d), | |
| break_.f, | |
| ]) | |
| return ( | |
| self.a, | |
| np.log(self.b), | |
| self.c0, | |
| *break_params | |
| ) | |
| def __call__(self, x): | |
| y = self.b * x ** -self.c0 | |
| for c_i, d_i, f_i in self.breaks: | |
| y *= (1.0 + (x / d_i) ** (1.0 / f_i)) ** (-c_i * f_i) | |
| return self.a + y | |
| def loss(self, x, y): | |
| """Mean squared log error""" | |
| log_diff = np.log(self(x)) - np.log(y) | |
| return np.mean(log_diff ** 2) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment