Skip to content

Instantly share code, notes, and snippets.

@norabelrose
Last active September 19, 2023 20:51
Show Gist options
  • Save norabelrose/3f7c1cacbe817c60a186fa945616bd0f to your computer and use it in GitHub Desktop.
Save norabelrose/3f7c1cacbe817c60a186fa945616bd0f to your computer and use it in GitHub Desktop.
PyTorch dataset for loading imagenet images from Kaggle
from PIL import Image
from torch.utils.data import Dataset
import json
import os
class ImageNetKaggle(Dataset):
def __init__(self, root, split, transform=None):
self.samples = []
self.targets = []
self.transform = transform
self.syn_to_class = {}
with open(os.path.join(root, "imagenet_class_index.json"), "rb") as f:
json_file = json.load(f)
for class_id, v in json_file.items():
self.syn_to_class[v[0]] = int(class_id)
with open(os.path.join(root, "ILSVRC2012_val_labels.json"), "rb") as f:
self.val_to_syn = json.load(f)
samples_dir = os.path.join(root, "ILSVRC/Data/CLS-LOC", split)
for entry in os.listdir(samples_dir):
if split == "train":
syn_id = entry
target = self.syn_to_class[syn_id]
syn_folder = os.path.join(samples_dir, syn_id)
for sample in os.listdir(syn_folder):
sample_path = os.path.join(syn_folder, sample)
self.samples.append(sample_path)
self.targets.append(target)
elif split == "val":
syn_id = self.val_to_syn[entry]
target = self.syn_to_class[syn_id]
sample_path = os.path.join(samples_dir, entry)
self.samples.append(sample_path)
self.targets.append(target)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
x = Image.open(self.samples[idx]).convert("RGB").resize((256, 256))
if self.transform:
x = self.transform(x)
return x, self.targets[idx]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment