Created
November 15, 2023 05:59
-
-
Save norabelrose/620f1300db9781a1366a69b4698dd745 to your computer and use it in GitHub Desktop.
Hidden state extraction
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from argparse import ArgumentParser | |
from pathlib import Path | |
from datasets import Dataset, load_dataset | |
from tqdm.auto import tqdm | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
if __name__ == "__main__": | |
parser = ArgumentParser(description="Process and save model hidden states.") | |
parser.add_argument("model", type=str, help="Name of the Hugging Face model") | |
parser.add_argument("dataset", type=str, help="Name of the Hugging Face dataset") | |
parser.add_argument("save_path", type=Path, help="Path to save the hidden states") | |
parser.add_argument( | |
"--splits", nargs="+", default=["validation", "test"], help="Dataset splits to process" | |
) | |
args = parser.parse_args() | |
model = AutoModelForCausalLM.from_pretrained( | |
args.model, device_map={"": torch.cuda.current_device()}, torch_dtype="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(args.model) | |
for split in args.splits: | |
print(f"Processing '{split}' split...") | |
dataset = load_dataset(args.dataset, split=split) | |
assert isinstance(dataset, Dataset) | |
root = args.save_path / split | |
root.mkdir(parents=True, exist_ok=True) | |
buffers = [ | |
torch.full([len(dataset), model.config.hidden_size], torch.nan, device=model.device, dtype=model.dtype) | |
for _ in range(model.config.num_hidden_layers) | |
] | |
ccs_buffers = [ | |
torch.full([len(dataset), 2, model.config.hidden_size], torch.nan, device=model.device, dtype=model.dtype) | |
for _ in range(model.config.num_hidden_layers) | |
] | |
log_odds = torch.full([len(dataset)], torch.nan, device=model.device, dtype=model.dtype) | |
for i, record in tqdm(enumerate(dataset), total=len(dataset)): | |
assert isinstance(record, dict) | |
prompt = tokenizer.encode(record["statement"]) | |
choice1 = tokenizer.encode(record["choices"][0]) | |
choice2 = tokenizer.encode(record["choices"][1]) | |
assert len(choice1) == len(choice2) == 1, "Choices should be one token each" | |
choice_toks = [choice1[0], choice2[0]] | |
with torch.inference_mode(): | |
outputs = model( | |
torch.as_tensor([prompt], device=model.device), | |
output_hidden_states=True, | |
use_cache=True, | |
) | |
# FOR CCS: Gather hidden states for each of the two choices | |
ccs_outputs = [ | |
model( | |
torch.as_tensor([choice], device=model.device), | |
output_hidden_states=True, | |
past_key_values=outputs.past_key_values, | |
).hidden_states[1:] | |
for choice in (choice1, choice2) | |
] | |
for j, (state1, state2) in enumerate(zip(*ccs_outputs)): | |
ccs_buffers[j][i, 0] = state1.squeeze() | |
ccs_buffers[j][i, 1] = state2.squeeze() | |
logit1, logit2 = outputs.logits[0, -1, choice_toks] | |
log_odds[i] = logit2 - logit1 | |
# Extract hidden states of the last token in each layer | |
for j, state in enumerate(outputs.hidden_states[1:]): | |
buffers[j][i] = state[0, -1, :] | |
# Sanity check | |
assert all(buffer.isfinite().all() for buffer in buffers) | |
assert all(buffer.isfinite().all() for buffer in ccs_buffers) | |
assert log_odds.isfinite().all() | |
# Save results to disk for later | |
labels = torch.as_tensor(dataset["label"], dtype=model.dtype) | |
torch.save(buffers, root / f"hiddens.pt") | |
torch.save(ccs_buffers, root / f"ccs_hiddens.pt") | |
torch.save(labels, root / f"labels.pt") | |
torch.save(log_odds, root / f"log_odds.pt") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment