Last active
December 12, 2015 02:39
-
-
Save notogawa/4700924 to your computer and use it in GitHub Desktop.
PFAD1章の最初のminfreeを定義するまで
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module PFAD1 where | |
open import Function | |
open import Coinduction | |
open import Data.Bool | |
open import Data.List | |
open import Data.Colist | |
open import Data.Nat | |
open import Data.Product | |
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym) | |
record Eq {x} (X : Set x) : Set x where | |
field | |
_==_ : X → X → Bool | |
Eq-ℕ : Eq ℕ | |
Eq-ℕ = record { _==_ = eq } | |
where | |
eq : ℕ → ℕ → Bool | |
eq 0 0 = true | |
eq 0 (suc _) = false | |
eq (suc _) 0 = false | |
eq (suc n) (suc m) = eq n m | |
elem : ∀{x} {X : Set x} → Eq X → X → List X → Bool | |
elem eq n xs = any (_==_ n) xs | |
where | |
open Eq {{...}} | |
notElem : ∀{x} {X : Set x} → Eq X → X → List X → Bool | |
notElem eq n xs = not $ elem eq n xs | |
-- [n..] | |
from : ℕ → Colist ℕ | |
from n = n ∷ ♯ from (suc n) | |
-- 無限Colistに対しては安全なhead,tailが定義できる | |
head×tail : ∀{x} {X : Set x} {xs : Colist X} → Infinite xs → X × Colist X | |
head×tail {_} {_} {[]} () | |
head×tail {_} {_} {x ∷ xs} inf = (x , ♭ xs) | |
head : ∀{x} {X : Set x} {xs : Colist X} → Infinite xs → X | |
head {x} {X} {xs} = proj₁ ∘ head×tail {x} {X} {xs} | |
tail : ∀{x} {X : Set x} {xs : Colist X} → Infinite xs → Colist X | |
tail {x} {X} {xs} = proj₂ ∘ head×tail {x} {X} {xs} | |
max : ℕ → ℕ → ℕ | |
max n m with compare n m | |
max .n .(suc n + k) | less n k = suc n + k | |
max .n .n | equal n = n | |
max .(suc n + k) .n | greater n k = suc n + k | |
_\\_ : List ℕ → List ℕ → List ℕ | |
xs \\ ys = filter (λ x → x ⟨ notElem Eq-ℕ ⟩ ys) xs | |
split_at : ∀{x}{X : Set x} → Colist X → ℕ → List X × Colist X | |
split_at [] n = ([] , []) | |
split_at xs 0 = ([] , xs) | |
split_at {x} {X} (x' ∷ xs) (suc n) = (x' ∷ proj₁ xs' , proj₂ xs') | |
where | |
xs' : List X × Colist X | |
xs' = split_at {x} {X} (♭ xs) n | |
_\\\_ : Colist ℕ → List ℕ → Colist ℕ | |
xs \\\ [] = xs | |
xs \\\ (y ∷ ys) = fromList (proj₁ xys \\ (y ∷ ys)) Data.Colist.++ proj₂ xys | |
where | |
xys : List ℕ × Colist ℕ | |
xys = split xs at $ suc $ foldl max y ys | |
-- [n..]は無限Colist | |
from_→∞ : ∀ n → Infinite (from n) | |
from n →∞ = n ∷ ♯ from suc n →∞ | |
-- 無限Colist を 右append すると無限Colist | |
_++_∞→∞ : ∀{x} {X : Set x} (xs : Colist X) → {ys : Colist X} → | |
Infinite ys → Infinite (xs Data.Colist.++ ys) | |
_++_∞→∞ [] {ys} ys∞ = ys∞ | |
_++_∞→∞ (x ∷ xs) {ys} ys∞ = x ∷ ♯ _++_∞→∞ (♭ xs) {ys} ys∞ | |
-- 無限Colist の tail も無限Colist | |
tail_∞→∞ : ∀{x}{X : Set x} → {xs : Colist X} → | |
(xs∞ : Infinite xs) → Infinite (tail xs∞) | |
tail_∞→∞ {_} {_} {[]} () | |
tail_∞→∞ {_} {_} {(.x ∷ .xs)} (_∷_ x {xs} inf) = ♭ inf | |
-- 無限Colist の split at n , proj₂ は無限Colist | |
split_∞at_₂→∞ : ∀{x} {X : Set x} → | |
{xs : Colist X} → Infinite xs → | |
(n : ℕ) → Infinite (proj₂ $ split xs at n) | |
split_∞at_₂→∞ {_} {_} {[]} () 0 | |
split_∞at_₂→∞ {_} {_} {x ∷ xs} x∷xs∞ 0 = x∷xs∞ | |
split_∞at_₂→∞ {_} {_} {[]} () (suc n) | |
split_∞at_₂→∞ {_} {_} {x ∷ xs} x∷xs∞ (suc n)= split_∞at_₂→∞ {_} {_} {♭ xs} (tail x∷xs∞ ∞→∞) n | |
-- 無限Colist \\\ List は無限Colist | |
_∞\\\_→∞ : ∀{xs} → Infinite xs → ∀ ys → Infinite (xs \\\ ys) | |
_∞\\\_→∞ {xs} xs∞ [] = xs∞ | |
_∞\\\_→∞ {xs} xs∞ (y ∷ ys) = fromList (proj₁ xys \\ (y ∷ ys)) ++ split xs∞ ∞at m ₂→∞ ∞→∞ | |
where | |
m = suc $ foldl max y ys | |
xys = split xs at m | |
-- やっとminfree | |
minfree : List ℕ → ℕ | |
minfree xs = head (from 0 →∞ ∞\\\ xs →∞) | |
-- テスト | |
test-minfree1 : minfree [] ≡ 0 | |
test-minfree1 = refl | |
test-minfree2 : minfree (0 ∷ []) ≡ 1 | |
test-minfree2 = refl | |
test-minfree3 : minfree (1 ∷ []) ≡ 0 | |
test-minfree3 = refl | |
test-minfree4 : minfree (0 ∷ 1 ∷ []) ≡ 2 | |
test-minfree4 = refl | |
test-minfree5 : minfree (0 ∷ 2 ∷ []) ≡ 1 | |
test-minfree5 = refl | |
test-minfree6 : minfree (1 ∷ 2 ∷ []) ≡ 0 | |
test-minfree6 = refl | |
test-minfree7 : minfree (0 ∷ 4 ∷ 5 ∷ 3 ∷ 1 ∷ []) ≡ 2 | |
test-minfree7 = refl | |
-- こっからminfreeの性質の証明をーって.疲れた | |
postulate | |
minfree-is-free : ∀{xs} → elem Eq-ℕ (minfree xs) xs ≡ false | |
minfree-is-min : ∀{xs} → minfree xs < minfree (minfree xs ∷ xs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment