Created
December 7, 2013 15:40
-
-
Save notogawa/7844079 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- http://people.inf.elte.hu/divip/AgdaTutorial/Functions.Equality_Proofs.html | |
module Theorem where | |
import Level | |
data ℕ : Set where | |
zero : ℕ | |
suc : (n : ℕ) → ℕ | |
{-# BUILTIN NATURAL ℕ #-} | |
{-# BUILTIN ZERO zero #-} | |
{-# BUILTIN SUC suc #-} | |
infix 4 _≡_ | |
data _≡_ {a} {A : Set a} (x : A) : A → Set a where | |
refl : x ≡ x | |
{-# BUILTIN EQUALITY _≡_ #-} | |
{-# BUILTIN REFL refl #-} | |
infixl 6 _+_ | |
_+_ : ℕ → ℕ → ℕ | |
zero + n = n | |
suc m + n = suc (m + n) | |
sym : ∀ {l} {A : Set l} {a b : A} → a ≡ b → b ≡ a | |
sym refl = refl | |
trans : ∀ {l} {A : Set l} {a b c : A} → a ≡ b → b ≡ c → a ≡ c | |
trans a≡b b≡c rewrite a≡b | b≡c = refl | |
cong : ∀ {a b} {A : Set a} {B : Set b} {m n : A} → (f : A → B) → m ≡ n → f m ≡ f n | |
cong f m≡n rewrite m≡n = refl | |
infixl 1 _⟨_⟩_ | |
_⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A → (A → B → C) → B → C | |
x ⟨ f ⟩ y = f x y | |
+-right-identity : ∀ n → n + 0 ≡ n | |
+-right-identity zero = refl | |
+-right-identity (suc n) = cong suc (+-right-identity n) | |
+-assoc : ∀ a b c → a + (b + c) ≡ (a + b) + c | |
+-assoc zero b c = refl | |
+-assoc (suc a) b c = cong suc (+-assoc a b c) | |
+-comm : ∀ a b → a + b ≡ b + a | |
+-comm zero b = sym (+-right-identity b) | |
+-comm (suc a) b = +-assoc 1 a b | |
⟨ trans ⟩ cong suc (+-comm a b) | |
⟨ trans ⟩ sym (n+1≡1+n (b + a)) | |
⟨ trans ⟩ sym (+-assoc b a 1) | |
⟨ trans ⟩ cong (_+_ b) (n+1≡1+n a) | |
where | |
n+1≡1+n : ∀ n → n + 1 ≡ 1 + n | |
n+1≡1+n zero = refl | |
n+1≡1+n (suc n) = cong suc (n+1≡1+n n) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment