Last active
August 29, 2015 13:58
-
-
Save notthetup/10014988 to your computer and use it in GitHub Desktop.
Interactive iPython Notebook Test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:05444a3a666df9d8410c09f11f59337f93fee5d8a8eb28978ad18c56128d427d" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import numpy as np\n", | |
"import math\n", | |
"import matplotlib.pyplot as plt\n", | |
"from IPython.html.widgets import interactive\n", | |
"from IPython.display import Audio, display" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"t = np.linspace(0.0, 2, num=88001)\n", | |
"\n", | |
"def plot_curve (tau = 0.9):\n", | |
" t60m = 6.90776;\n", | |
" tauN = tau/t60m;\n", | |
" v = 1 - np.exp(-t/tauN);\n", | |
" plt.plot(t,v)\n", | |
" plt.grid('on')\n", | |
" \n", | |
"v = interactive(plot_curve, tau=(0.1,3))\n", | |
"display(v)\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHuBJREFUeJzt3Xt4VPWdx/E3mFQBkWBBlCQ2C4khCiR0gagoG0UL0iVe\nsBrddg1Gm9KySt1WtnXbha6FplWrmKp4QRRspF4wIDitIMFbY7SCCElrUJAkuNEICHJLSM7+8TOB\nkJDrb+acM/N5Pc88ySGHma/f5/jN8JlzfqeH4zgOIiISVnq6XYCIiNin4S4iEoY03EVEwpCGu4hI\nGNJwFxEJQxruIiJhqN3hfuONNzJo0CBGjBhx3H1uueUWkpKSSE1NZf369VYLFBGRzmt3uE+bNo1A\nIHDcn69atYotW7ZQXl7Oww8/zPTp060WKCIindfucL/wwgvp37//cX++fPlybrjhBgDS09PZvXs3\n1dXV9ioUEZFO63bmXlVVRXx8fNN2XFwclZWV3X1aERHpBisfqB67gkGPHj1sPK2IiHRRVHefIDY2\nloqKiqbtyspKYmNjW91vx44d3X05EZGIMnToULZs2dLpv9ft4Z6ZmUl+fj5ZWVkUFxcTExPDoEGD\nWuy3Y8eOFu/wpetmz57N7Nmz3S4jLKiXdnW2nw0NsG8ffPkl7N3b/Ov+/XDgQOe/HvtnBw/CCSfA\niSeax9e+duT74/1Ze9snngjR0UceUVFtf9/ez1v7/oQTup6EtDvcr7vuOtatW0dNTQ3x8fHMmTOH\nuro6AHJzc5k8eTKrVq0iMTGRPn368Pjjj3epEOmcbdu2uV1C2FAvu6ahAfbsgV27YPdu89i1C15+\neRunnGK2Gwf1sUP76D/btw969YK+fc3j5JOPfO3d2zx69Wr+tX//1v/8eF9POgl6RthVPe0O94KC\ngnafJD8/30oxIhJ6DQ1mKNfUHHl89tmR7z///Mjwbhzgu3eb4dy3L8TEHHn07w/V1VBRAf36QWxs\n84F97PDu2xf69DHvUMWubscy4o7s7Gy3Swgb4djLQ4fg//4PPvnEPBq/r65uObx37jRDduBAGDDA\nPBq/HzQIUlLM0O7fv/kgP+WU1odyUVE2GRkh/0+WY/QI1c06evToocxdpJscBz79FLZvN4+KCtix\no+UQ37sXTjsNzjjDPE4//cjXY4f4qaeajFe8qauzU8Pdp4qKisjQ2yMrvNTL2lrYts08jh7gR3/f\nty+ceSbEx5vH4MFHhnjj4+tfdy9j9lI/w0FXZ6diGZEQ+/JL+PBD89iypfn3n3wCcXGQkADf+IYZ\n4hdcYL42DvTevd3+LxA/0Dt3kSBwHKishLKy5o9//MOcYTJkCAwdComJ5mvj92eeqYhEmlMsI+IC\nx4GqKnjvPXj//eaDvE8fOPts84Fk4yM52cQokXZannSdhnuEUa5pT0d7WVcHf/87bNhghvmGDebR\nsyekpcGIEc2HeRvr7YU1HZt2KXMXsaihwQzyt96CkhLzKCszsUlaGqSmwn/+p/n+9NNByymJ1+id\nuwjmFMLiYjPE33oL3nnHnCY4diykp8OYMWag9+njdqUSaRTLiHSQ45hTDV999cjj88/NEE9PNwN9\n7FhzHriI2zTcI4xyzY5zHHOa4SuvHBnmhw/D+PHm0atXEdnZGfqQ0xIdm3Ypcxc5yq5dZpj/5S/m\nUVsLEybAxRfD7NnmtMPGnLyoSGevSPjRO3cJCw0N8Pbb8NJLZphv2mQu/vnWt8wjJUUfeoo/KZaR\niHPgAKxZA4WFsGKFyci//W2YOBHOP98s8yrid12dnfrHqE8VFRW5XYIrPv8cHn8crrjCnIJ4993m\n3PI33jDv1vPyTPTSmcEeqb0MFvXTG5S5i+d98QW88AIsXWqG+KWXwtVXw8KFZkVDEWlJsYx40r59\nJmp5+mlYuxYuugiuvRamTDE3eRCJFMrcxfccB15/3cQuy5bBuedCVhZcfrm5OYRIJFLmHmHCKdes\nqIBf/xrOOgt+8AOToZeVmTNfbrgh+IM9nHrpBeqnNyhzF1fU18OqVfDAA+aS/2uugaeeMpf565RF\nke5TLCMhVVMDjz0GDz1k7s/5ox+ZD0d79XK7MhFv0hWq4mnvvAP33w/Ll8OVV8Kzz8I//7PbVYmE\nL2XuPuWHXNNxTG5+0UUwdSoMH27WeFm40FuD3Q+99BP10xv0zl2sq601pzDedZfJz2+/3WTqun2c\nSOgocxdrDh6ERx6B3/7W3E7u9tvNBUf6gFSk65S5i2sOHYJHH4V582DUKHOO+ujRblclEtmUufuU\nF3LNQ4fgwQchKcmc1rhsmbmq1G+D3Qu9DCfqpzfonbt0WkMDFBTAHXeYpXSfecbcwUhEvEOZu3TK\n2rXw05+am1vcdZe5k5GIBI8ydwmq0lKYNQs2b4a5c83ZL7p7kYh36X9PnwpVrvnFFzBzJvzLv5jz\n1cvKzGJe4TTYlRHbpX56Qxj9Lyo2OQ4sXmwy9X37zFC/7TY48US3KxORjlDmLi1s3GjWfDlwAP7w\nB31YKuImLfkr3XbggMnVL7kE/u3f4K23NNhF/ErD3ads55qvvQZpabB1K7z/vllX/YQTrL6EZykj\ntkv99AadLRPh9u6Fn/3MXICUn29WbBQR/2v3nXsgEGDYsGEkJSWRl5fX4uc1NTVMmjSJtLQ0hg8f\nzqJFi4JRpxwjIyOj28+xbh2MGGE+MN20KXIHu41eyhHqpze0+YFqfX09ycnJrF69mtjYWMaMGUNB\nQQEpKSlN+8yePZtDhw4xb948ampqSE5Oprq6mqio5v8o0Aeq3lFbC7/8JTz5pFkTZvJktysSkeMJ\nygeqJSUlJCYmkpCQQHR0NFlZWRQWFjbb54wzzmDPnj0A7Nmzh69//estBrvY19Vcs6zM3Hi6tBQ2\nbNBgB2XEtqmf3tDmcK+qqiI+Pr5pOy4ujqqqqmb73HzzzWzevJnBgweTmprKfffdF5xKpVscxyzy\nNX485OZCYSGcdprbVYlIsLT5FrtHBxbinjt3LmlpaRQVFfHhhx9y6aWX8t5779G3b98W+2ZnZ5OQ\nkABATEwMaWlpTflc4297bXdsu/HPOrL/3r2QmVlERQW8/noGycnu1++l7YyMDE/V4/dt9bN720VF\nRU2fXTbOy65oM3MvLi5m9uzZBAIBAObNm0fPnj2ZNWtW0z6TJ0/mjjvuYNy4cQBMmDCBvLw8Rh+z\n7qsyd3ds2mRuQD1+PMyfDyed5HZFItIZQcncR48eTXl5Odu2baO2tpalS5eSmZnZbJ9hw4axevVq\nAKqrq/nHP/7BkCFDOl2IdE7jb/q2LF5s1oP5+c/h4Yc12I+nI72UjlM/vaHNWCYqKor8/HwmTpxI\nfX09OTk5pKSksGDBAgByc3P5+c9/zrRp00hNTaWhoYHf/va3nHrqqSEpXlpXWwu33gqvvGIeI0a4\nXZGIhJrWlgkzNTUmhjnlFFiyxHwVEf/S2jLCpk0wdiycd5654lSDXSRyabj71LG55ooVcPHF8Ktf\nmRtVR8q6MDYoI7ZL/fQGXW0UBu6919zybsUKreIoIoYydx9raIDbb4dVqyAQgDPPdLsiEbFN91CN\nMIcOQXY2VFbC66+DTlASkaMpc/ehL76Ac88torYWXn5Zg727lBHbpX56g4a7z3z6qblZdUIC/OlP\nujBJRFqnzN1HqqrMLfCuuQZmz4YOLP0jIj6n89zD3LZt5h17djbMmaPBLiJt03D3gfJyM9hnzjQ3\nsAblmjapl3apn96gs2U8rqwMLr3UXJx0441uVyMifqHM3cPKy82qjvPmwfe+53Y1IuIGZe5hZutW\n8+HpnDka7CLSeRruHrR9O0yYYPL1nJzW91GuaY96aZf66Q0a7h6zY4cZ7P/xH/DDH7pdjYj4lTJ3\nD9m1y9wO77rrzN2TRES6Ojs13D3iwAH41rdg9Gi45x6dxy4ihj5Q9bHDh+H66yE+Hu6+u2ODXbmm\nPeqlXeqnN+g8d5c5DvzoR/Dll7B0KfTUr1sRsUCxjMvmzIHly6GoCPr2dbsaEfEarefuQ0uWwKJF\nUFyswS4idikEcMkbb8Btt8GLL8KgQZ3/+8o17VEv7VI/vUHD3QVbt8LVV8MTT8A557hdjYiEI2Xu\nIbZnD5x/PuTmmguVRETaovPcfaC+HqZMgX/6J8jP17nsItI+nefuA7/4hbmx9X33dX+wK9e0R720\nS/30Bp0tEyLLlsFTT8E770CUui4iQaZYJgT+/nezZszKlTBmjNvViIifKJbxqL174corYe5cDXYR\nCR0N9yByHJg2DS68EG66ye5zK9e0R720S/30BqW/QTR/Pnz8scnaRURCSZl7kPztbzBpErz1FgwZ\n4nY1IuJXytw9ZO9eyMoy57JrsIuIGzTcg+CHP4SMDLj22uC9hnJNe9RLu9RPb1DmbtmTT5pI5p13\n3K5ERCJZu5l7IBBg5syZ1NfXc9NNNzFr1qwW+xQVFfHjH/+Yuro6BgwY0Opv7kjI3D/4AMaNg1de\ngREj3K5GRMJBUNaWqa+vJzk5mdWrVxMbG8uYMWMoKCggJSWlaZ/du3czbtw4/vznPxMXF0dNTQ0D\nBgywVqBfHD5sBvv3vgczZrhdjYiEi6B8oFpSUkJiYiIJCQlER0eTlZVFYWFhs33++Mc/MnXqVOLi\n4gBaHeyRIC8P+vUzeXsoKNe0R720S/30hjaHe1VVFfHx8U3bcXFxVFVVNdunvLycnTt3ctFFFzF6\n9GgWL14cnEo9bP16sxjYwoW6B6qIeEObH6j26MDShXV1dbz77rusWbOG/fv3c95553HuueeSlJRk\nrUgvO3jQRDH33ANf/eMlJDIyMkL3YmFOvbRL/fSGNod7bGwsFRUVTdsVFRVN8Uuj+Ph4BgwYQK9e\nvejVqxfjx4/nvffea3W4Z2dnk5CQAEBMTAxpaWlNB0LjP+X8tr1yZQbDhkFsbBFFRe7Xo21ta9vf\n20VFRSxatAigaV52idOGuro6Z8iQIc7WrVudQ4cOOampqU5paWmzfcrKypwJEyY4hw8fdvbt2+cM\nHz7c2bx5c4vnauelfOm11xznjDMc59NPQ//aa9euDf2Lhin10i71066uzs4237lHRUWRn5/PxIkT\nqa+vJycnh5SUFBYsWABAbm4uw4YNY9KkSYwcOZKePXty8803c/bZZ3f9t41PHDwIOTnmKtSBA92u\nRkSkOa0t00X//d9QVgbPPed2JSISznQP1RDauBEuuQTeew/OOMPtakQknGnhsBCprzdrs8+d6+5g\nb/wARrpPvbRL/fQGDfdOmj8f+vQxebuIiFcplumErVvNrfL++leIkNP4RcRlimVC4JZb4LbbNNhF\nxPs03DtoxQooL4ef/MTtSgzlmvaol3apn96g9dw74MAB86794Yfha19zuxoRkfYpc++A//kfKC2F\nZ55xuxIRiTQ6zz1ItmyB9HTYsAGOWiBTRCQk9IFqEDiOiWNuv917g125pj3qpV3qpzcoc2/DihXw\n0UfwwgtuVyIi0jmKZY6jthaGDzcXLU2a5HY1IhKpFMtY9uCDMGSIBruI+JOGeyt27oQ774S77nK7\nkuNTrmmPemmX+ukNGu6t+N//halTTSwjIuJHytyP8cEHcP75sHkzDBrkdjUiEumUuVsyaxb89Kca\n7CLibxruR1m3zlysdOutblfSPuWa9qiXdqmf3qDh/hXHgf/6L5O3n3SS29WIiHSPMvevLF8Od9xh\n3rmfcILb1YiIGMrcu6G+3gz2X/9ag11EwoOGO1BQAH37wpQpblfScco17VEv7VI/vSHi15aprYVf\n/hIefxx69HC7GhEROyI+c3/gAZO3BwJuVyIi0pLWc++C/fshMRFefBG++U23qxERaUkfqHbBAw+Y\nq1H9ONiVa9qjXtqlfnpDxGbu+/fD3XfDX/7idiUiIvZFbCzz+9/D66/Dc8+5XYmIyPEpc++EAwdg\n6FBYtQrS0tyuRkTk+JS5d8Ijj8DYsf4e7Mo17VEv7VI/vSHiMveDByEvz9wfVUQkXEVcLPOHP5hz\n2jXcRcQPlLl3wKFD5rz255+HMWNcLUVEpEOUuXfA4sVwzjnhMdiVa9qjXtqlfnpDxGTuDQ3wu9/B\nggVuVyIiEnwRE8ssWwbz5sFbb2mBMBHxj6DFMoFAgGHDhpGUlEReXt5x93v77beJiori+eef73QR\nweY45gyZWbM02EUkMrQ53Ovr65kxYwaBQIDS0lIKCgooKytrdb9Zs2YxadIk1z80bc1rr8HOnXDF\nFW5XYo9yTXvUS7vUT29oc7iXlJSQmJhIQkIC0dHRZGVlUVhY2GK/+++/n6uvvpqBAwcGrdDuyMuD\nn/xEd1kSkcjR5nCvqqoiPj6+aTsuLo6qqqoW+xQWFjJ9+nTA5ENe8v77sH49/Pu/u12JXRkZGW6X\nEDbUS7vUT29oc7h3ZFDPnDmT3/zmN02hv9dimd/9Dm65BU46ye1KRERCp81TIWNjY6moqGjarqio\nIC4urtk+f/vb38jKygKgpqaGl156iejoaDIzM1s8X3Z2NgkJCQDExMSQlpbW9Fu+Maezuf3ZZ7By\nZQbz5wfn+d3cvvfee4Pev0jZPjoj9kI9ft9WP7vfv0WLFgE0zcuuaPNUyMOHD5OcnMyaNWsYPHgw\nY8eOpaCggJSUlFb3nzZtGlOmTOGqq65q+UIunAr5s5+Zddvvuy+kLxsSRUVFTQeGdI96aZf6aVdX\nZ2eb79yjoqLIz89n4sSJ1NfXk5OTQ0pKCgu+uhIoNze3a9WGwP798Oij8Ne/ul1JcOh/HnvUS7vU\nT28I24uYHnnELA62fHnIXlJExDqtLXMUxzFRzK23ul1J8Byda0r3qJd2qZ/eEJbDfc0acyXqxRe7\nXYmIiDvCMpaZMgUuvxxuuikkLyciEjRaz/0r5eUwbhx8/DH06hX0lxMRCSpl7l+5/37zjj3cB7ty\nTXvUS7vUT28Iq/Xc9+6FJUtg40a3KxERcVdYxTIPPQQvvwzPPRfUlxERCZmIj2Ucxwz3H/zA7UpE\nRNwXNsO9uBj27YMJE9yuJDSUa9qjXtqlfnpD2Az3hx6C3FzoGTb/RSIiXRcWmfvnn8PQobBlCwwY\nEJSXEBFxRURn7k88YS5c0mAXETF8P9wbGkwk89WNoCKGck171Eu71E9v8P1wX7vW3GXpvPPcrkRE\nxDt8n7l/5ztmgbBIe+cuIpEhIteW+ewzSEoy68j062f1qUVEPCEiP1BdsgQyMyNzsCvXtEe9tEv9\n9AbfDnfHgcceg5wctysREfEe38Yyb78N111nlvjt0cPa04qIeErExTILF8K0aRrsIiKt8eVw378f\nli6FG25wuxL3KNe0R720S/30Bl8O92XLID0d4uLcrkRExJt8mblPmGCW9v3Od6w8nYiIZ0XMee4f\nfWTetVdWwoknWihMRMTDIuYD1SeeMGfJRPpgV65pj3ppl/rpDb66h6rjwOLF8OyzblciIuJtvopl\n3nwTbroJNm/WKZAiEhkiIpZZsgS++10NdhGR9vhmuNfWwp/+BNdf73Yl3qBc0x710i710xt8M9wD\nATj7bEhIcLsSERHv803mfs01cMkl8P3vWyxKRMTjwvo89y++gG98A7Zuhf79LRcmIuJhYf2B6nPP\nmatSNdiPUK5pj3ppl/rpDb4Y7o1nyYiISMd4PpapqIC0NNixQ1elikjkCdtY5umnYepUDXYRkc7o\n0HAPBAIMGzaMpKQk8vLyWvz8qaeeIjU1lZEjRzJu3Dg2btxorcClSyEry9rThQ3lmvaol3apn97Q\n7toy9fX1zJgxg9WrVxMbG8uYMWPIzMwkJSWlaZ8hQ4bw6quv0q9fPwKBAN///vcpLi7udnEffmhi\nmfHju/1UIiIRpd137iUlJSQmJpKQkEB0dDRZWVkUFhY22+e8886jX79+AKSnp1NZWWmluGeeMZFM\nlK+WNwuNjIwMt0sIG+qlXeqnN7Q73KuqqoiPj2/ajouLo6qq6rj7P/bYY0yePNlKcUuXwrXXWnkq\nEZGI0u574h6dWKVr7dq1LFy4kDfeeKPVn2dnZ5Pw1foBMTExpKWlNf2Wb8zpGrcXLy5i+3a44ILW\nfx7p2/fee2+b/dN2x7ePzoi9UI/ft9XP7vdv0aJFAE3zsivaPRWyuLiY2bNnEwgEAJg3bx49e/Zk\n1qxZzfbbuHEjV111FYFAgMTExJYv1MnTee68Ez79FObP7/BfiShFRUVNB4Z0j3ppl/ppV9CWHzh8\n+DDJycmsWbOGwYMHM3bsWAoKCpp9oLp9+3YuvvhilixZwrnnnmulwJEj4YEH4IILOvxXRETCTleH\ne7uxTFRUFPn5+UycOJH6+npycnJISUlhwYIFAOTm5vKrX/2KXbt2MX36dACio6MpKSnpdDGNyspg\n5044//wuP4WISETz5BWqc+bA7t3w+98HuSgf0z997VEv7VI/7QqbK1Qdx5wlc801blciIuJfnnvn\nvmkTTJ4MH3+s2+mJiITNO/fnnzcXLmmwi4h0neeG+7JlcOWVblfhfUefSyzdo17apX56g6eG+9at\nUFUF48a5XYmIiL95KnO/5x4oLYVHHw1FRSIi3hcWmbsiGREROzwz3Kur4f33zb1SpX3KNe1RL+1S\nP73BM8N9+XKYNAlOOsntSkRE/M8zmftll0F2tpb4FRE5WtAWDrOlrQK/+ALi46GyEk45JRTViIj4\ng68/UF21Ci68UIO9M5Rr2qNe2qV+eoMnhrvOkhERscv1WObgQRg0CMrL4bTTQlGJiIh/+DaWWbcO\nhg/XYBcRscn14b5iBUyZ4nYV/qNc0x710i710xtcHe6OAy++CP/6r25WISISflzN3DdtMu/aP/pI\nS/yKiLTGl5n7ihXmXbsGu4iIXa4Od0UyXadc0x710i710xtcG+41NSaW0X10RUTscy1zf/JJeOEF\nc1s9ERFpne8yd0UyIiLB48pwr62Fl1+Gb3/bjVcPD8o17VEv7VI/vcGV4f7663DWWWbZARERsc+V\nzP3HP4ZTT4Vf/CIUrywi4l++ytxXrlQkIyISTCEf7h99BHv2QFpaqF85vCjXtEe9tEv99IaQD/c/\n/xkmToSeri9ZJiISvkKeuV9+ublP6vXXh+JVRUT8zRf3UD10yGHgQNiyBQYODMWrioj4my8+UH3z\nTUhO1mC3QbmmPeqlXeqnN4R0uDfm7SIiElwhjWXS0hzy82HcuFC8ooiI//kic4+JcfjsM4iKCsUr\nioj4X9Ay90AgwLBhw0hKSiIvL6/VfW655RaSkpJITU1l/fr1x32uCRM02G1RrmmPemmX+ukNbQ73\n+vp6ZsyYQSAQoLS0lIKCAsrKyprts2rVKrZs2UJ5eTkPP/ww06dPP+7zTZpkp2iBDRs2uF1C2FAv\n7VI/vaHN4V5SUkJiYiIJCQlER0eTlZVFYWFhs32WL1/ODTfcAEB6ejq7d++murq61efTh6n27N69\n2+0SwoZ6aZf66Q1tDveqqiri4+ObtuPi4qiqqmp3n8rKylaf76jdREQkiNoc7j06eOfqY8P+jv49\n6bpt27a5XULYUC/tUj+9oc2PN2NjY6moqGjarqioIC4urs19KisriY2NbfFcQ4cO1dC37IknnnC7\nhLChXtqlftozdOjQLv29Nof76NGjKS8vZ9u2bQwePJilS5dSUFDQbJ/MzEzy8/PJysqiuLiYmJgY\nBrVyF44tW7Z0qUAREem8Nod7VFQU+fn5TJw4kfr6enJyckhJSWHBggUA5ObmMnnyZFatWkViYiJ9\n+vTh8ccfD0nhIiJyfCG7iElERELH+toyNi96inTt9bKoqIh+/foxatQoRo0axZ133ulClf5w4403\nMmjQIEaMGHHcfXRcdlx7/dSx2TkVFRVcdNFFnHPOOQwfPpz58+e3ul+njlHHosOHDztDhw51tm7d\n6tTW1jqpqalOaWlps31WrlzpXHbZZY7jOE5xcbGTnp5us4Sw0ZFerl271pkyZYpLFfrLq6++6rz7\n7rvO8OHDW/25jsvOaa+fOjY755NPPnHWr1/vOI7j7N271znrrLO6PTutvnO3fdFTJOtIL6HlaajS\nugsvvJD+/fsf9+c6LjunvX6Cjs3OOP3000n76t6jJ598MikpKezYsaPZPp09Rq0Od9sXPUWyjvSy\nR48evPnmm6SmpjJ58mRKS0tDXWbY0HFpl47Nrtu2bRvr168nPT292Z939hi1uoyXLnqypyM9+eY3\nv0lFRQW9e/fmpZde4oorruCDDz4IQXXhScelPTo2u+bLL7/k6quv5r777uPkk09u8fPOHKNW37nb\nvOgp0nWkl3379qV3794AXHbZZdTV1bFz586Q1hkudFzapWOz8+rq6pg6dSrf/e53ueKKK1r8vLPH\nqNXhfvRFT7W1tSxdupTMzMxm+2RmZvLkk08CtHnRU6TrSC+rq6ubfpOXlJTgOA6nnnqqG+X6no5L\nu3Rsdo7jOOTk5HD22Wczc+bMVvfp7DFqNZbRRU/2dKSXzz77LA8++CBRUVH07t2bp59+2uWqveu6\n665j3bp11NTUEB8fz5w5c6irqwN0XHZFe/3Usdk5b7zxBkuWLGHkyJGMGjUKgLlz57J9+3aga8eo\nLmISEQlDIb1BtoiIhIaGu4hIGNJwFxEJQxruIiJhSMNdRCQMabiLiIQhDXcRkTCk4S4iEob+H7Dj\nIoCVHg4KAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x109ebf510>" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment