Last active
November 10, 2024 22:24
-
-
Save noughtmare/6d2d7d1be433a4ccd1dd1f9f4bff36df to your computer and use it in GitHub Desktop.
Modeling correct-by-construction Sudoku in Agda
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Data.Fin as Fin using (Fin ; #_ ; _≟_) | |
open import Data.Fin.Properties using (suc-injective) | |
open import Level as Level using (Level) | |
open import Data.Unit using (⊤ ; tt) | |
open import Data.Empty | |
open import Data.Product as Product | |
open import Data.Product.Properties as Product using (,-injective ; ≡-dec) | |
open import Data.Sum | |
open import Relation.Binary.PropositionalEquality | |
open import Data.Nat using (ℕ ; _+_) | |
open import Data.Nat.Literals as Nat | |
open import Data.Fin.Literals as Fin | |
open import Level.Literals as Lvl | |
open import Agda.Builtin.FromNat | |
open import Data.Vec as Vec using (Vec ; _∷_ ; []) | |
import Data.Vec.Properties as Vec | |
open import Relation.Nullary.Decidable | |
open import Function using (case_of_ ; _↔_ ; mk↔ₛ′) | |
open import Relation.Binary using (DecidableEquality) | |
instance | |
NumFin : ∀ {n} → Number (Fin n) | |
NumFin {n} = Fin.number n | |
NumNat : Number ℕ | |
NumNat = Nat.number | |
-- NumLvl : Number Level | |
-- NumLvl = Lvl.Levelℕ | |
-- | |
-- variable ℓ : Level | |
Rel : Set → Set → Set₁ | |
Rel A B = A → B → Set | |
Irrelevant : ∀{A B} → Rel A B → Set | |
Irrelevant R = ∀{a b} → (x y : R a b) → x ≡ y | |
Cell Num Row Col Blk : Set | |
Num = Fin 4 | |
Row = Fin 4 | |
Col = Fin 4 | |
Blk = Fin 4 | |
Cell = Row × Col | |
R : Rel Row Cell | |
R row (row′ , _) = row ≡ row′ | |
C : Rel Col Cell | |
C col (_ , col′) = col ≡ col′ | |
lookup2 : ∀ {A : Set} {n m} → Vec (Vec A n) m → Fin m × Fin n → A | |
lookup2 v (r , c) = Vec.lookup (Vec.lookup v r) c | |
B : Rel Blk Cell | |
B b (r , c) = b ≡ lookup2 | |
((0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷ | |
(0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷ | |
(2 ∷ 2 ∷ 3 ∷ 3 ∷ []) ∷ | |
(2 ∷ 2 ∷ 3 ∷ 3 ∷ []) ∷ []) | |
(r , c) | |
Cell′ : Set | |
Cell′ = Blk × Fin 4 | |
B′ : Rel Blk Cell′ | |
B′ b (b′ , _) = b ≡ b′ | |
rel→ʳ : ∀{A B B′} → (B′ → B) → Rel A B → Rel A B′ | |
rel→ʳ from R x y = R x (from y) | |
rel→ˡ : ∀{A A′ B} → (A′ → A) → Rel A B → Rel A′ B | |
rel→ˡ from R x y = R (from x) y | |
_∘_ : ∀{A B C : Set} → Rel A B → Rel B C → Rel A C | |
(R ∘ S) x z = ∃[ y ] R x y × S y z | |
open Function.Inverse | |
∘→ : ∀{A B B′ C} {R : Rel A B} {S : Rel B C} → (f : B ↔ B′) → ∀ x y → (R ∘ S) x y → (rel→ʳ (f .from) R ∘ rel→ˡ (f .from) S) x y | |
∘→ {R = R} {S} f _ _ (x , r , s) = f .to x , subst (λ X → R _ X) (sym (proj₂ (f .inverse) refl)) r , subst (λ X → S X _) (sym (proj₂ (f .inverse) refl)) s | |
record Sudoku : Set₁ where | |
field | |
N : Rel Cell Num | |
distinct-r : Irrelevant (R ∘ N) | |
distinct-c : Irrelevant (C ∘ N) | |
distinct-b : Irrelevant (B ∘ N) | |
open Sudoku | |
dec-fin : ∀ {n} {f : Fin n → Set} → (∀ x → Dec (f x)) → Dec (∀ x → f x) | |
dec-fin {ℕ.zero} _ = yes (λ ()) | |
dec-fin {ℕ.suc n} f with f Fin.zero | dec-fin (λ i → f (Fin.suc i)) | |
... | yes x | yes y = yes λ where | |
Fin.zero → x | |
(Fin.suc i) → y i | |
... | yes x | no y = no λ f → y (λ i → f (Fin.suc i)) | |
... | no x | _ = no (λ f → x (f Fin.zero)) | |
dec-distinct₁ : ∀{A : Set} {n} (_ : DecidableEquality A) (x : A) (f : Fin n → A) → Dec (∀ i → x ≢ f i) | |
dec-distinct₁ {n = ℕ.zero} _≟_ x f = yes (λ ()) | |
dec-distinct₁ {n = ℕ.suc n} _≟_ x f with x ≟ f Fin.zero | dec-distinct₁ {n = n} _≟_ x (λ i → f (Fin.suc i)) | |
... | yes x | _ = no (λ f → f Fin.zero x) | |
... | no x | yes y = yes λ where | |
Fin.zero x₂ → x x₂ | |
(Fin.suc i) x₂ → y i x₂ | |
... | no x | no y = no (λ f → y λ i → f (Fin.suc i)) | |
dec-distinct : ∀{A : Set} {n} (_ : DecidableEquality A) (f : Fin n → A) → Dec (∀ i j → (f i ≡ f j) → i ≡ j) | |
dec-distinct {n = ℕ.zero} _≟_ f = yes (λ _ ()) | |
dec-distinct {n = ℕ.suc n} _≟_ f with dec-distinct₁ _≟_ (f Fin.zero) (λ i → f (Fin.suc i)) | dec-distinct _≟_ (λ i → f (Fin.suc i)) | |
... | yes x | yes y = yes λ where | |
Fin.zero Fin.zero _ → refl | |
Fin.zero (Fin.suc j) z → case x j z of λ () | |
(Fin.suc i) Fin.zero z → case x i (sym z) of λ () | |
(Fin.suc i) (Fin.suc j) z → cong Fin.suc (y i j z) | |
... | yes _ | no y = no λ f → y (λ i j x → suc-injective (f (Fin.suc i) (Fin.suc j) x)) | |
... | no x | _ = no λ f → x λ i x₁ → case f Fin.zero (Fin.suc i) x₁ of λ () | |
-- Slower but simpler :) | |
-- dec-distinct _≟_ f = dec-fin (λ i → dec-fin λ j → | |
-- case i Fin.≟ j of λ where | |
-- (yes x) → yes (λ _ → x) | |
-- (no x) → case f i ≟ f j of λ where | |
-- (yes y) → no λ z → x (z y) | |
-- (no y) → yes (λ z → ⊥-elim (y z))) | |
board : Vec (Vec Num 4) 4 | |
board = ((0 ∷ 1 ∷ 2 ∷ 3 ∷ []) ∷ | |
(2 ∷ 3 ∷ 0 ∷ 1 ∷ []) ∷ | |
(1 ∷ 0 ∷ 3 ∷ 2 ∷ []) ∷ | |
(3 ∷ 2 ∷ 1 ∷ 0 ∷ []) ∷ []) | |
blkBoard : Vec (Vec Cell 4) 4 | |
blkBoard = (((0 , 0) ∷ (0 , 1) ∷ (1 , 0) ∷ (1 , 1) ∷ []) ∷ | |
((0 , 2) ∷ (0 , 3) ∷ (1 , 2) ∷ (1 , 3) ∷ []) ∷ | |
((2 , 0) ∷ (2 , 1) ∷ (3 , 0) ∷ (3 , 1) ∷ []) ∷ | |
((2 , 2) ∷ (2 , 3) ∷ (3 , 2) ∷ (3 , 3) ∷ []) ∷ []) | |
cell↔cell′ : Cell ↔ Cell′ | |
cell↔cell′ = mk↔ₛ′ | |
(lookup2 blkBoard) | |
(lookup2 blkBoard) | |
(λ where (x , y) → from-yes (dec-fin (λ x → dec-fin (λ y → ≡-dec _≟_ _≟_ (lookup2 blkBoard (lookup2 blkBoard (x , y))) (x , y)))) x y) | |
(λ where (x , y) → from-yes (dec-fin (λ x → dec-fin (λ y → ≡-dec _≟_ _≟_ (lookup2 blkBoard (lookup2 blkBoard (x , y))) (x , y)))) x y) | |
-- blk-ix→cell : Blk × Fin 4 → Cell | |
-- blk-ix→cell = lookup2 blkBoard | |
B→B′ : ∀ x y → rel→ʳ (cell↔cell′ .from) B x y → B′ x y | |
B→B′ x (Fin.zero , Fin.zero) refl = refl | |
B→B′ x (Fin.zero , Fin.suc Fin.zero) refl = refl | |
B→B′ x (Fin.zero , Fin.suc (Fin.suc Fin.zero)) refl = refl | |
B→B′ x (Fin.zero , Fin.suc (Fin.suc (Fin.suc Fin.zero))) refl = refl | |
B→B′ x (Fin.suc Fin.zero , Fin.zero) refl = refl | |
B→B′ x (Fin.suc Fin.zero , Fin.suc Fin.zero) refl = refl | |
B→B′ x (Fin.suc Fin.zero , Fin.suc (Fin.suc Fin.zero)) refl = refl | |
B→B′ x (Fin.suc Fin.zero , Fin.suc (Fin.suc (Fin.suc Fin.zero))) refl = refl | |
B→B′ x (Fin.suc (Fin.suc Fin.zero) , Fin.zero) refl = refl | |
B→B′ x (Fin.suc (Fin.suc Fin.zero) , Fin.suc Fin.zero) refl = refl | |
B→B′ x (Fin.suc (Fin.suc Fin.zero) , Fin.suc (Fin.suc Fin.zero)) refl = refl | |
B→B′ x (Fin.suc (Fin.suc Fin.zero) , Fin.suc (Fin.suc (Fin.suc Fin.zero))) refl = refl | |
B→B′ x (Fin.suc (Fin.suc (Fin.suc Fin.zero)) , Fin.zero) refl = refl | |
B→B′ x (Fin.suc (Fin.suc (Fin.suc Fin.zero)) , Fin.suc Fin.zero) refl = refl | |
B→B′ x (Fin.suc (Fin.suc (Fin.suc Fin.zero)) , Fin.suc (Fin.suc Fin.zero)) refl = refl | |
B→B′ x (Fin.suc (Fin.suc (Fin.suc Fin.zero)) , Fin.suc (Fin.suc (Fin.suc Fin.zero))) refl = refl | |
-- ∘→ : ∀{A B B′ C} {R : Rel A B} {S : Rel B C} → (f : B ↔ B′) → ∀{x y} → (R ∘ S) x y → (rel→ʳ (f .from) R ∘ rel→ˡ (f .from) S) x y | |
map2 : ∀{n m} {A B : Set} → (A → B) → Vec (Vec A m) n → Vec (Vec B m) n | |
map2 f v = Vec.map (Vec.map f) v | |
lookup2-map2 : ∀{m n A B} {f : A → B} {v : Vec (Vec A m) n} {i : Fin n × Fin m} → lookup2 (map2 f v) i ≡ f (lookup2 v i) | |
lookup2-map2 {f = f} {v = v} {i = r , c} = trans (cong (λ X → Vec.lookup X c) (Vec.lookup-map r (Vec.map f) v)) (Vec.lookup-map c f (Vec.lookup v r)) | |
test : Sudoku | |
test .N (r , c) w = w ≡ lookup2 board (r , c) | |
test .distinct-r ((r , c₁) , refl , refl) ((.r , c₂) , refl , N) with from-yes (dec-fin (λ i → dec-distinct _≟_ (λ j → lookup2 board (i , j)))) r c₁ c₂ N | N | |
... | refl | refl = refl | |
test .distinct-c ((r₁ , c) , refl , refl) ((r₂ , .c) , refl , N) with from-yes (dec-fin (λ j → dec-distinct _≟_ (λ i → lookup2 board (i , j)))) c r₁ r₂ N | N | |
... | refl | refl = refl | |
test .distinct-b {a} {b} x y with ∘→ {A = Blk} {B = Cell} {B′ = Cell′} {C = Num} {R = B} {S = test .N} cell↔cell′ a b x | ∘→ {A = Blk} {B = Cell} {C = Num} {R = B} {S = test .N} cell↔cell′ a b y | |
test .distinct-b {a} {b} x y | ((b₁ , i₁) , B₁ , refl) | ((b₂ , i₂) , B₂ , N) with B→B′ a (b₁ , i₁) B₁ | B→B′ a (b₂ , i₂) B₂ | |
test .distinct-b x y | ((b , i₁) , _ , refl) | ((.b , i₂) , _ , N) | refl | refl with from-yes (dec-fin (λ i → dec-distinct _≟_ (λ j → lookup2 board (i , j)))) b i₁ i₂ (trans (lookup2-map2 {f = lookup2 board} {v = blkBoard} {i = b , i₁}) (trans N (sym (lookup2-map2 {f = lookup2 board} {v = blkBoard} {i = b , i₂})))) | N | |
... | refl | refl = {!!} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment