Created
September 13, 2012 19:50
-
-
Save nrrb/3717107 to your computer and use it in GitHub Desktop.
Uses Munkres algorithm to create teams of students in a class with optimal satisfaction of students
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# | |
import os | |
import urllib | |
import csv | |
import sys | |
import re | |
from google.appengine.ext import blobstore | |
from google.appengine.ext import webapp | |
from google.appengine.ext.webapp import blobstore_handlers | |
from google.appengine.ext.webapp import template | |
from google.appengine.ext.webapp.util import run_wsgi_app | |
class MainHandler(webapp.RequestHandler): | |
def get(self): | |
upload_url = blobstore.create_upload_url('/upload') | |
template_values = {'upload_url': upload_url } | |
path = os.path.join(os.path.dirname(__file__), 'index.html') | |
self.response.out.write(template.render(path, template_values)) | |
class UploadHandler(blobstore_handlers.BlobstoreUploadHandler): | |
def post(self): | |
upload_files = self.get_uploads('file') # 'file' is file upload field in the form | |
blob_info = upload_files[0] | |
self.redirect('/serve/%s' % blob_info.key()) | |
class ServeHandler(blobstore_handlers.BlobstoreDownloadHandler): | |
def get(self, resource): | |
resource = str(urllib.unquote(resource)) | |
blob_reader = blobstore.BlobReader(resource) | |
blob_info = blobstore.BlobInfo.get(resource) | |
# self.send_blob(blob_info) | |
self.ProcessCSVFile(blob_reader) | |
def PadJobRankingsData(self, job_rankings): | |
maximum_rank = 999999 | |
cost_matrix = [] | |
for row in job_rankings: | |
new_row = row | |
for cell_index in range(len(new_row)): | |
cell_value = row[cell_index] | |
if cell_value == '' or cell_value == '0': | |
cell_value = str(maximum_rank * 2) | |
new_row[cell_index] = int(cell_value) | |
cost_matrix.append(new_row) | |
return cost_matrix | |
def BestJobFit(self, job_rankings, student_ids, job_ids): | |
# Using the excellent munkres module (http://bmc.github.com/munkres/). | |
#from munkres import Munkres | |
m = Munkres() | |
indexes = m.compute(job_rankings) | |
bestfit_array = [] | |
for row, column in indexes: | |
student_id = student_ids[row] | |
job_id = job_ids[column] | |
value = job_rankings[row][column] | |
bestfit_array.append({'student_id': student_id, 'job_id': job_id, 'ranking': value}) | |
return bestfit_array | |
def ProcessCSVFile(self, csv_file): | |
path = os.path.join(os.path.dirname(__file__), 'results.html') | |
source_data_rows = csv.reader(csv_file, delimiter=',', quotechar='"') | |
source_matrix = [] | |
column_headings_row_index = 1 | |
data_start_row_index = 2 | |
for row in source_data_rows: | |
source_matrix.append(row) | |
column_headings_row = source_matrix[column_headings_row_index] | |
# Find student ID column | |
studentid_column_heading = re.compile("Name") | |
studentid_column_index = -1 | |
for column_index in range(len(column_headings_row)): | |
column_heading = column_headings_row[column_index] | |
if studentid_column_heading.search(column_heading): | |
studentid_column_index = column_index | |
if studentid_column_index < 0: | |
# Couldn't find a student ID Column, freak out or something | |
self.response.out.write("FREAK OUT - No student ID Column") | |
# Extract the student IDs | |
student_ids = [] | |
for row in source_matrix[data_start_row_index:]: | |
student_ids.append(row[studentid_column_index]) | |
# Make sure there are no duplicate student IDs - (OPTIONAL) | |
if self.HasDuplicates(student_ids): | |
# Freak out | |
self.response.out.write("FREAK OUT - Duplicate student IDs") | |
# Identify Job IDs and respective column indices | |
job_ids = [] | |
job_column_indices = [] | |
job_column_heading = re.compile("-(.*?)\s*-Rank") | |
for column_heading_index in range(len(column_headings_row)): | |
column_heading = column_headings_row[column_heading_index] | |
if job_column_heading.search(column_heading): | |
job_column_indices.append(column_heading_index) | |
# Strip leading "-" and trailing "-Rank" from job ID | |
job_id = job_column_heading.search(column_heading).group(1) | |
job_ids.append(job_id) | |
# Extract sub-table of data from matrix | |
job_rankings = [] | |
for row_index in range(data_start_row_index,len(student_ids)+data_start_row_index): | |
source_row = source_matrix[row_index] | |
rankings_row = [] | |
for column_index in job_column_indices: | |
rankings_row.append(source_row[column_index]) | |
job_rankings.append(rankings_row) | |
# Process data | |
# Replace 0 and blank values in matrix with maximal values | |
job_rankings = self.PadJobRankingsData(job_rankings) | |
# Perform calculation | |
job_matches = self.BestJobFit(job_rankings, student_ids, job_ids) | |
# Render in the template specified by path | |
template_values = { 'student_ids': student_ids, | |
'job_ids': job_ids, | |
'job_rankings': job_rankings, | |
'matches': job_matches } | |
self.response.out.write(template.render(path, template_values)) | |
def HasDuplicates(self, some_array): | |
# HasDuplicates(some_array): determines whether any | |
# values in the given array are duplicates. | |
# | |
# Unit tests: | |
# HasDuplicates(["a", "aa", "aaa", "aaaa", "a"]) = True | |
# HasDuplicates(["a", "aa", "aaa", "aaaa"]) = False | |
# HasDuplicates([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) = False | |
# HasDuplicates([1, 2, 3, 1]) = True | |
for array_value in some_array: | |
if some_array.count(array_value) > 1: | |
return True | |
return False | |
############################################################################# | |
# --------------------------------------------------------------------------- | |
# Exports | |
# --------------------------------------------------------------------------- | |
__all__ = ['Munkres', 'make_cost_matrix'] | |
# --------------------------------------------------------------------------- | |
# Globals | |
# --------------------------------------------------------------------------- | |
# Info about the module | |
__version__ = "1.0.5.4" | |
__author__ = "Brian Clapper, [email protected]" | |
__url__ = "http://bmc.github.com/munkres/" | |
__copyright__ = "(c) 2008 Brian M. Clapper" | |
__license__ = "BSD-style license" | |
# --------------------------------------------------------------------------- | |
# Classes | |
# --------------------------------------------------------------------------- | |
class Munkres: | |
""" | |
Calculate the Munkres solution to the classical assignment problem. | |
See the module documentation for usage. | |
""" | |
def __init__(self): | |
"""Create a new instance""" | |
self.C = None | |
self.row_covered = [] | |
self.col_covered = [] | |
self.n = 0 | |
self.Z0_r = 0 | |
self.Z0_c = 0 | |
self.marked = None | |
self.path = None | |
def make_cost_matrix(profit_matrix, inversion_function): | |
""" | |
**DEPRECATED** | |
Please use the module function ``make_cost_matrix()``. | |
""" | |
import munkres | |
return munkres.make_cost_matrix(profit_matrix, inversion_function) | |
make_cost_matrix = staticmethod(make_cost_matrix) | |
def pad_matrix(self, matrix, pad_value=0): | |
""" | |
Pad a possibly non-square matrix to make it square. | |
:Parameters: | |
matrix : list of lists | |
matrix to pad | |
pad_value : int | |
value to use to pad the matrix | |
:rtype: list of lists | |
:return: a new, possibly padded, matrix | |
""" | |
max_columns = 0 | |
total_rows = len(matrix) | |
for row in matrix: | |
max_columns = max(max_columns, len(row)) | |
total_rows = max(max_columns, total_rows) | |
new_matrix = [] | |
for row in matrix: | |
row_len = len(row) | |
new_row = row[:] | |
if total_rows > row_len: | |
# Row too short. Pad it. | |
new_row += [0] * (total_rows - row_len) | |
new_matrix += [new_row] | |
while len(new_matrix) < total_rows: | |
new_matrix += [[0] * total_rows] | |
return new_matrix | |
def compute(self, cost_matrix): | |
""" | |
Compute the indexes for the lowest-cost pairings between rows and | |
columns in the database. Returns a list of (row, column) tuples | |
that can be used to traverse the matrix. | |
:Parameters: | |
cost_matrix : list of lists | |
The cost matrix. If this cost matrix is not square, it | |
will be padded with zeros, via a call to ``pad_matrix()``. | |
(This method does *not* modify the caller's matrix. It | |
operates on a copy of the matrix.) | |
**WARNING**: This code handles square and rectangular | |
matrices. It does *not* handle irregular matrices. | |
:rtype: list | |
:return: A list of ``(row, column)`` tuples that describe the lowest | |
cost path through the matrix | |
""" | |
self.C = self.pad_matrix(cost_matrix) | |
self.n = len(self.C) | |
self.original_length = len(cost_matrix) | |
self.original_width = len(cost_matrix[0]) | |
self.row_covered = [False for i in range(self.n)] | |
self.col_covered = [False for i in range(self.n)] | |
self.Z0_r = 0 | |
self.Z0_c = 0 | |
self.path = self.__make_matrix(self.n * 2, 0) | |
self.marked = self.__make_matrix(self.n, 0) | |
done = False | |
step = 1 | |
steps = { 1 : self.__step1, | |
2 : self.__step2, | |
3 : self.__step3, | |
4 : self.__step4, | |
5 : self.__step5, | |
6 : self.__step6 } | |
while not done: | |
try: | |
func = steps[step] | |
step = func() | |
except KeyError: | |
done = True | |
# Look for the starred columns | |
results = [] | |
for i in range(self.original_length): | |
for j in range(self.original_width): | |
if self.marked[i][j] == 1: | |
results += [(i, j)] | |
return results | |
def __copy_matrix(self, matrix): | |
"""Return an exact copy of the supplied matrix""" | |
return copy.deepcopy(matrix) | |
def __make_matrix(self, n, val): | |
"""Create an *n*x*n* matrix, populating it with the specific value.""" | |
matrix = [] | |
for i in range(n): | |
matrix += [[val for j in range(n)]] | |
return matrix | |
def __step1(self): | |
""" | |
For each row of the matrix, find the smallest element and | |
subtract it from every element in its row. Go to Step 2. | |
""" | |
C = self.C | |
n = self.n | |
for i in range(n): | |
minval = min(self.C[i]) | |
# Find the minimum value for this row and subtract that minimum | |
# from every element in the row. | |
for j in range(n): | |
self.C[i][j] -= minval | |
return 2 | |
def __step2(self): | |
""" | |
Find a zero (Z) in the resulting matrix. If there is no starred | |
zero in its row or column, star Z. Repeat for each element in the | |
matrix. Go to Step 3. | |
""" | |
n = self.n | |
for i in range(n): | |
for j in range(n): | |
if (self.C[i][j] == 0) and \ | |
(not self.col_covered[j]) and \ | |
(not self.row_covered[i]): | |
self.marked[i][j] = 1 | |
self.col_covered[j] = True | |
self.row_covered[i] = True | |
self.__clear_covers() | |
return 3 | |
def __step3(self): | |
""" | |
Cover each column containing a starred zero. If K columns are | |
covered, the starred zeros describe a complete set of unique | |
assignments. In this case, Go to DONE, otherwise, Go to Step 4. | |
""" | |
n = self.n | |
count = 0 | |
for i in range(n): | |
for j in range(n): | |
if self.marked[i][j] == 1: | |
self.col_covered[j] = True | |
count += 1 | |
if count >= n: | |
step = 7 # done | |
else: | |
step = 4 | |
return step | |
def __step4(self): | |
""" | |
Find a noncovered zero and prime it. If there is no starred zero | |
in the row containing this primed zero, Go to Step 5. Otherwise, | |
cover this row and uncover the column containing the starred | |
zero. Continue in this manner until there are no uncovered zeros | |
left. Save the smallest uncovered value and Go to Step 6. | |
""" | |
step = 0 | |
done = False | |
row = -1 | |
col = -1 | |
star_col = -1 | |
while not done: | |
(row, col) = self.__find_a_zero() | |
if row < 0: | |
done = True | |
step = 6 | |
else: | |
self.marked[row][col] = 2 | |
star_col = self.__find_star_in_row(row) | |
if star_col >= 0: | |
col = star_col | |
self.row_covered[row] = True | |
self.col_covered[col] = False | |
else: | |
done = True | |
self.Z0_r = row | |
self.Z0_c = col | |
step = 5 | |
return step | |
def __step5(self): | |
""" | |
Construct a series of alternating primed and starred zeros as | |
follows. Let Z0 represent the uncovered primed zero found in Step 4. | |
Let Z1 denote the starred zero in the column of Z0 (if any). | |
Let Z2 denote the primed zero in the row of Z1 (there will always | |
be one). Continue until the series terminates at a primed zero | |
that has no starred zero in its column. Unstar each starred zero | |
of the series, star each primed zero of the series, erase all | |
primes and uncover every line in the matrix. Return to Step 3 | |
""" | |
count = 0 | |
path = self.path | |
path[count][0] = self.Z0_r | |
path[count][1] = self.Z0_c | |
done = False | |
while not done: | |
row = self.__find_star_in_col(path[count][1]) | |
if row >= 0: | |
count += 1 | |
path[count][0] = row | |
path[count][1] = path[count-1][1] | |
else: | |
done = True | |
if not done: | |
col = self.__find_prime_in_row(path[count][0]) | |
count += 1 | |
path[count][0] = path[count-1][0] | |
path[count][1] = col | |
self.__convert_path(path, count) | |
self.__clear_covers() | |
self.__erase_primes() | |
return 3 | |
def __step6(self): | |
""" | |
Add the value found in Step 4 to every element of each covered | |
row, and subtract it from every element of each uncovered column. | |
Return to Step 4 without altering any stars, primes, or covered | |
lines. | |
""" | |
minval = self.__find_smallest() | |
for i in range(self.n): | |
for j in range(self.n): | |
if self.row_covered[i]: | |
self.C[i][j] += minval | |
if not self.col_covered[j]: | |
self.C[i][j] -= minval | |
return 4 | |
def __find_smallest(self): | |
"""Find the smallest uncovered value in the matrix.""" | |
minval = sys.maxint | |
for i in range(self.n): | |
for j in range(self.n): | |
if (not self.row_covered[i]) and (not self.col_covered[j]): | |
if minval > self.C[i][j]: | |
minval = self.C[i][j] | |
return minval | |
def __find_a_zero(self): | |
"""Find the first uncovered element with value 0""" | |
row = -1 | |
col = -1 | |
i = 0 | |
n = self.n | |
done = False | |
while not done: | |
j = 0 | |
while True: | |
if (self.C[i][j] == 0) and \ | |
(not self.row_covered[i]) and \ | |
(not self.col_covered[j]): | |
row = i | |
col = j | |
done = True | |
j += 1 | |
if j >= n: | |
break | |
i += 1 | |
if i >= n: | |
done = True | |
return (row, col) | |
def __find_star_in_row(self, row): | |
""" | |
Find the first starred element in the specified row. Returns | |
the column index, or -1 if no starred element was found. | |
""" | |
col = -1 | |
for j in range(self.n): | |
if self.marked[row][j] == 1: | |
col = j | |
break | |
return col | |
def __find_star_in_col(self, col): | |
""" | |
Find the first starred element in the specified row. Returns | |
the row index, or -1 if no starred element was found. | |
""" | |
row = -1 | |
for i in range(self.n): | |
if self.marked[i][col] == 1: | |
row = i | |
break | |
return row | |
def __find_prime_in_row(self, row): | |
""" | |
Find the first prime element in the specified row. Returns | |
the column index, or -1 if no starred element was found. | |
""" | |
col = -1 | |
for j in range(self.n): | |
if self.marked[row][j] == 2: | |
col = j | |
break | |
return col | |
def __convert_path(self, path, count): | |
for i in range(count+1): | |
if self.marked[path[i][0]][path[i][1]] == 1: | |
self.marked[path[i][0]][path[i][1]] = 0 | |
else: | |
self.marked[path[i][0]][path[i][1]] = 1 | |
def __clear_covers(self): | |
"""Clear all covered matrix cells""" | |
for i in range(self.n): | |
self.row_covered[i] = False | |
self.col_covered[i] = False | |
def __erase_primes(self): | |
"""Erase all prime markings""" | |
for i in range(self.n): | |
for j in range(self.n): | |
if self.marked[i][j] == 2: | |
self.marked[i][j] = 0 | |
# --------------------------------------------------------------------------- | |
# Functions | |
# --------------------------------------------------------------------------- | |
def make_cost_matrix(profit_matrix, inversion_function): | |
""" | |
Create a cost matrix from a profit matrix by calling | |
'inversion_function' to invert each value. The inversion | |
function must take one numeric argument (of any type) and return | |
another numeric argument which is presumed to be the cost inverse | |
of the original profit. | |
This is a static method. Call it like this: | |
.. python:: | |
cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func) | |
For example: | |
.. python:: | |
cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxint - x) | |
:Parameters: | |
profit_matrix : list of lists | |
The matrix to convert from a profit to a cost matrix | |
inversion_function : function | |
The function to use to invert each entry in the profit matrix | |
:rtype: list of lists | |
:return: The converted matrix | |
""" | |
cost_matrix = [] | |
for row in profit_matrix: | |
cost_matrix.append([inversion_function(value) for value in row]) | |
return cost_matrix | |
def print_matrix(matrix, msg=None): | |
""" | |
Convenience function: Displays the contents of a matrix of integers. | |
:Parameters: | |
matrix : list of lists | |
Matrix to print | |
msg : str | |
Optional message to print before displaying the matrix | |
""" | |
import math | |
if msg is not None: | |
print msg | |
# Calculate the appropriate format width. | |
width = 0 | |
for row in matrix: | |
for val in row: | |
width = max(width, int(math.log10(val)) + 1) | |
# Make the format string | |
format = '%%%dd' % width | |
# Print the matrix | |
for row in matrix: | |
sep = '[' | |
for val in row: | |
sys.stdout.write(sep + format % val) | |
sep = ', ' | |
sys.stdout.write(']\n') | |
############################################################################# | |
def main(): | |
sys.path.insert(0, '.') | |
application = webapp.WSGIApplication( | |
[('/', MainHandler), | |
('/upload', UploadHandler), | |
('/serve/([^/]+)?', ServeHandler), | |
], debug=True) | |
run_wsgi_app(application) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment