Created
April 1, 2021 16:24
-
-
Save nsivabalan/91f12109e0fe1ca9749ff5290c946778 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// spark-shell | |
import org.apache.hudi.QuickstartUtils._ | |
import scala.collection.JavaConversions._ | |
import org.apache.spark.sql.SaveMode._ | |
import org.apache.hudi.DataSourceReadOptions._ | |
import org.apache.hudi.DataSourceWriteOptions._ | |
import org.apache.hudi.config.HoodieWriteConfig._ | |
import org.apache.spark.sql.types._ | |
import org.apache.spark.sql.Row | |
val tableName = "hudi_trips_cow" | |
val basePath = "file:///tmp/hudi_trips_cow" | |
val schema = StructType( Array( | |
StructField("rowId", StringType,true), | |
StructField("partitionId", StringType,true), | |
StructField("preComb", LongType,true), | |
StructField("name", StringType,true), | |
StructField("versionId", StringType,true), | |
StructField("intToDouble", IntegerType,true) | |
)) | |
val data0 = Seq(Row("row_1", "part_0",0L,"bob","v_0",0), | |
Row("row_2", "part_0",0L,"john","v_0",0), | |
Row("row_3", "part_0",0L,"tom","v_0",0)) | |
var dfFromData0 = spark.createDataFrame(data0,schema) | |
dfFromData0.write.format("hudi"). | |
options(getQuickstartWriteConfigs). | |
option(PRECOMBINE_FIELD_OPT_KEY, "preComb"). | |
option(RECORDKEY_FIELD_OPT_KEY, "rowId"). | |
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionId"). | |
option("hoodie.index.type","SIMPLE"). | |
option(TABLE_NAME, tableName). | |
option(OPERATION_OPT_KEY, "insert"). | |
mode(Overwrite). | |
save(basePath) | |
val schemaEvolved = StructType( Array( | |
StructField("rowId", StringType,true), | |
StructField("partitionId", StringType,true), | |
StructField("preComb", LongType,true), | |
StructField("name", StringType,true), | |
StructField("versionId", StringType,true), | |
StructField("intToDouble", DoubleType,true) | |
)) | |
// insert w/ evolved field. | |
// update w/ evolved schema | |
val data1 = Seq(Row("row_2", "part_0",5L,"john","v_3",1.0), | |
Row("row_3", "part_0",5L,"maroon","v_2",1.0), | |
Row("row_9", "part_0",5L,"michael","v_2",1.0)) | |
var dfFromData1 = spark.createDataFrame(data1,schemaEvolved) | |
dfFromData1.write.format("hudi"). | |
options(getQuickstartWriteConfigs). | |
option(PRECOMBINE_FIELD_OPT_KEY, "preComb"). | |
option(RECORDKEY_FIELD_OPT_KEY, "rowId"). | |
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionId"). | |
option("hoodie.index.type","SIMPLE"). | |
option(TABLE_NAME, tableName). | |
mode(Append). | |
save(basePath) | |
var tripsSnapshotDF1 = spark. | |
read. | |
format("hudi"). | |
load(basePath + "/*/*") | |
tripsSnapshotDF1.createOrReplaceTempView("hudi_trips_snapshot") | |
spark.sql("select rowId, partitionId, preComb, name, versionId, intToDouble from hudi_trips_snapshot").show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment