Created
January 2, 2022 22:16
-
-
Save nsivabalan/f7ee7fa611cfc864db7506c016a73787 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
./bin/spark-shell --packages org.apache.spark:spark-avro_2.11:2.4.4,org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.4 \ | |
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' --driver-memory 8g --executor-memory 9g --jars ~/Documents/personal/projects/nov26/hudi/packaging/hudi-spark-bundle/target/hudi-spark-bundle_2.11-0.10.0-SNAPSHOT.jar --conf spark.driver.extraJavaOptions="-Dlog4j.configuration=file:/Users/nsb/Documents/personal/tools/log4j/debug_hudi_log4j.properties" --conf spark.executor.extraJavaOptions="-Dlog4j.configuration=file:/Users/nsb/Documents/personal/tools/log4j/debug_hudi_log4j.properties" | |
// Define kafka flow | |
val dataStreamReader = spark. | |
readStream. | |
format("kafka"). | |
option("kafka.bootstrap.servers", "localhost:9092"). | |
option("subscribe", "impressions"). | |
option("startingOffsets", "earliest"). | |
option("maxOffsetsPerTrigger", 5000). | |
option("failOnDataLoss", false) | |
val df = dataStreamReader.load(). | |
selectExpr( | |
"topic as kafka_topic", | |
"CAST(partition AS STRING) kafka_partition", | |
"cast(timestamp as String) kafka_timestamp", | |
"CAST(offset AS STRING) kafka_offset", | |
"CAST(key AS STRING) kafka_key", | |
"CAST(value AS STRING) kafka_value", | |
"current_timestamp() current_time"). | |
selectExpr( | |
"kafka_topic", | |
"concat(kafka_partition,'-',kafka_offset) kafka_partition_offset", | |
"kafka_offset", | |
"kafka_timestamp", | |
"kafka_key", | |
"kafka_value", | |
"substr(current_time,1,10) partition_date") | |
import java.time.LocalDateTime | |
import scala.collection.JavaConversions._ | |
import org.apache.spark.sql.SaveMode._ | |
import org.apache.hudi.DataSourceReadOptions._ | |
import org.apache.hudi.DataSourceWriteOptions._ | |
import org.apache.hudi.config.HoodieWriteConfig._ | |
import org.apache.spark.sql.streaming.OutputMode; | |
import org.apache.spark.sql.streaming.ProcessingTime; | |
// Create and start query | |
val query = df | |
.writeStream | |
.queryName("demo") | |
.foreachBatch { (batchDF: DataFrame, _: Long) => { | |
batchDF.persist() | |
println(LocalDateTime.now() + " start writing cow table") | |
batchDF.write.format("org.apache.hudi") | |
.option(TABLE_TYPE.key, "COPY_ON_WRITE") | |
.option(PRECOMBINE_FIELD.key, "kafka_timestamp") | |
// Use kafka partition and offset as combined primary key | |
.option(RECORDKEY_FIELD.key, "kafka_partition_offset") | |
// Partition with current date | |
.option(PARTITIONPATH_FIELD.key, "partition_date") | |
.option(TABLE_NAME.key, "copy_on_write_table") | |
.option(HIVE_SYNC_ENABLED.key, false) | |
.option(HIVE_STYLE_PARTITIONING.key, true) | |
.option(FAIL_ON_TIMELINE_ARCHIVING_ENABLE.key, false) | |
.option(STREAMING_IGNORE_FAILED_BATCH.key, false) | |
.option(STREAMING_RETRY_CNT.key, 0) | |
.option("hoodie.table.name", "copy_on_write_table") | |
.mode(SaveMode.Append) | |
.save("/tmp/hudi_streaming_kafka/COPY_ON_WRITE") | |
println(LocalDateTime.now() + " finish") | |
batchDF.unpersist() | |
} | |
} | |
.option("checkpointLocation", "/tmp/hudi_streaming_kafka/checkpoint/") | |
.start() | |
query.awaitTermination() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment