Created
November 26, 2019 18:33
-
-
Save ntakouris/8141a314cd1f08a9ddc32731ee77015a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
import pandas as pd | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.utils import to_categorical | |
features = ["Pclass", "Sex", "SibSp", "Parch"] | |
raw_train_data = pd.read_csv("./input/train.csv") | |
train_data = raw_train_data[features] | |
# train_data.head() | |
raw_test_data = pd.read_csv("./input/test.csv") | |
test_data = raw_test_data[features] | |
# test_data.head() | |
y = raw_train_data["Survived"] | |
d = {'female': 1, 'male': 0} | |
#one-hotify | |
train_data["Sex"] = train_data["Sex"].replace(d) | |
one_hot_pclass = pd.get_dummies(train_data['Pclass']) | |
train_data = train_data.drop('Pclass', axis = 1) | |
train_data = train_data.join(one_hot_pclass) | |
X = pd.get_dummies(train_data) | |
X_test = pd.get_dummies(test_data) | |
model = Sequential() | |
model.add(Dense(32, activation='relu', input_shape=(len(train_data.columns),))) | |
model.add(Dense(4, activation='relu')) | |
model.add(Dense(1, activation='relu')) | |
model.compile(optimizer='adam', | |
loss='binary_crossentropy', | |
metrics=['accuracy']) | |
model.fit(train_data, y, epochs=25, validation_split=0.4) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment