Skip to content

Instantly share code, notes, and snippets.

@ntakouris
Created November 26, 2019 18:33
Show Gist options
  • Save ntakouris/8141a314cd1f08a9ddc32731ee77015a to your computer and use it in GitHub Desktop.
Save ntakouris/8141a314cd1f08a9ddc32731ee77015a to your computer and use it in GitHub Desktop.
import os
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
features = ["Pclass", "Sex", "SibSp", "Parch"]
raw_train_data = pd.read_csv("./input/train.csv")
train_data = raw_train_data[features]
# train_data.head()
raw_test_data = pd.read_csv("./input/test.csv")
test_data = raw_test_data[features]
# test_data.head()
y = raw_train_data["Survived"]
d = {'female': 1, 'male': 0}
#one-hotify
train_data["Sex"] = train_data["Sex"].replace(d)
one_hot_pclass = pd.get_dummies(train_data['Pclass'])
train_data = train_data.drop('Pclass', axis = 1)
train_data = train_data.join(one_hot_pclass)
X = pd.get_dummies(train_data)
X_test = pd.get_dummies(test_data)
model = Sequential()
model.add(Dense(32, activation='relu', input_shape=(len(train_data.columns),)))
model.add(Dense(4, activation='relu'))
model.add(Dense(1, activation='relu'))
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit(train_data, y, epochs=25, validation_split=0.4)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment