Created
December 8, 2019 14:05
-
-
Save ntakouris/9f3b0dd74f7ffa2903f23180f7c605fc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import unicode_literals, print_function, division | |
from io import open | |
import fasttext | |
import unicodedata | |
import string | |
import re | |
import random | |
import torch | |
import torchtext | |
import torch.nn as nn | |
from torch import optim | |
import torch.nn.functional as F | |
import random | |
from typing import Tuple | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from torch import Tensor | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
ft = fasttext.load_model("C:\\Users\\zarkopafilis\\Desktop\\implybot\\pretrained\\cc.en.300.bin") | |
vocab_size = len(ft.words) | |
SOS_EMBEDDING = ft['<sos>'] | |
EOS_EMBEDDING = ft['<eos>'] | |
class Encoder(nn.Module): | |
def __init__(self, | |
input_dim: int, | |
enc_hid_dim: int, | |
dec_hid_dim: int, | |
dropout: float): | |
super().__init__() | |
self.input_dim = input_dim | |
self.enc_hid_dim = enc_hid_dim | |
self.dec_hid_dim = dec_hid_dim | |
self.dropout = dropout | |
self.rnn = nn.GRU(input_dim, enc_hid_dim, bidirectional=True) | |
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, | |
src: Tensor) -> Tuple[Tensor]: | |
embedded = self.dropout(src) | |
outputs, hidden = self.rnn(embedded) | |
hidden = torch.tanh(self.fc(torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1))) | |
return outputs, hidden | |
class Attention(nn.Module): | |
def __init__(self, | |
enc_hid_dim: int, | |
dec_hid_dim: int, | |
attn_dim: int): | |
super().__init__() | |
self.enc_hid_dim = enc_hid_dim | |
self.dec_hid_dim = dec_hid_dim | |
self.attn_in = (enc_hid_dim * 2) + dec_hid_dim | |
self.attn = nn.Linear(self.attn_in, attn_dim) | |
def forward(self, | |
decoder_hidden: Tensor, | |
encoder_outputs: Tensor) -> Tensor: | |
src_len = encoder_outputs.shape[0] | |
repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1) | |
encoder_outputs = encoder_outputs.permute(1, 0, 2) | |
energy = torch.tanh(self.attn(torch.cat(( | |
repeated_decoder_hidden, | |
encoder_outputs), | |
dim=2))) | |
attention = torch.sum(energy, dim=2) | |
return F.softmax(attention, dim=1) | |
class Decoder(nn.Module): | |
def __init__(self, | |
output_dim: int, | |
emb_dim: int, | |
enc_hid_dim: int, | |
dec_hid_dim: int, | |
dropout: int, | |
attention: nn.Module): | |
super().__init__() | |
self.emb_dim = emb_dim | |
self.enc_hid_dim = enc_hid_dim | |
self.dec_hid_dim = dec_hid_dim | |
self.output_dim = output_dim | |
self.dropout = dropout | |
self.attention = attention | |
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim) | |
self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim) | |
self.dropout = nn.Dropout(dropout) | |
def _weighted_encoder_rep(self, | |
decoder_hidden: Tensor, | |
encoder_outputs: Tensor) -> Tensor: | |
a = self.attention(decoder_hidden, encoder_outputs) | |
a = a.unsqueeze(1) | |
encoder_outputs = encoder_outputs.permute(1, 0, 2) | |
weighted_encoder_rep = torch.bmm(a, encoder_outputs) | |
weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2) | |
return weighted_encoder_rep | |
def forward(self, | |
input: Tensor, | |
decoder_hidden: Tensor, | |
encoder_outputs: Tensor) -> Tuple[Tensor]: | |
input = input.unsqueeze(0) | |
embedded = self.dropout(input) | |
weighted_encoder_rep = self._weighted_encoder_rep(decoder_hidden, | |
encoder_outputs) | |
rnn_input = torch.cat((embedded, weighted_encoder_rep), dim=2) | |
output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0)) | |
embedded = embedded.squeeze(0) | |
output = output.squeeze(0) | |
weighted_encoder_rep = weighted_encoder_rep.squeeze(0) | |
output = self.out(torch.cat((output, | |
weighted_encoder_rep, | |
embedded), dim=1)) | |
return output, decoder_hidden.squeeze(0) | |
class Seq2Seq(nn.Module): | |
def __init__(self, | |
encoder: nn.Module, | |
decoder: nn.Module, | |
device: torch.device): | |
super().__init__() | |
self.encoder = encoder | |
self.decoder = decoder | |
self.device = device | |
def forward(self, | |
src: Tensor, | |
trg: Tensor, | |
teacher_forcing_ratio: float = 0.5) -> Tensor: | |
batch_size = src.shape[1] | |
max_len = trg.shape[0] | |
trg_vocab_size = self.decoder.output_dim | |
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device) | |
encoder_outputs, hidden = self.encoder(src) | |
# first input to the decoder is the <sos> token | |
output = trg[1, :] | |
for t in range(1, max_len): | |
output, hidden = self.decoder(output, hidden, encoder_outputs) | |
outputs[t] = output | |
teacher_force = True | |
top1 = output.max(1)[1] | |
output = (trg[t] if teacher_force else top1) | |
return outputs | |
INPUT_DIM = ft.get_dimension() | |
OUTPUT_DIM = INPUT_DIM | |
ENC_HID_DIM = 512 | |
DEC_HID_DIM = 512 | |
ATTN_DIM = 64 | |
ENC_DROPOUT = 0.5 | |
DEC_DROPOUT = 0.5 | |
enc = Encoder(INPUT_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT) | |
attn = Attention(ENC_HID_DIM, DEC_HID_DIM, ATTN_DIM) | |
dec = Decoder(OUTPUT_DIM, INPUT_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn) | |
model = Seq2Seq(enc, dec, device).to(device) | |
def init_weights(m: nn.Module): | |
for name, param in m.named_parameters(): | |
if 'weight' in name: | |
nn.init.normal_(param.data, mean=0, std=0.01) | |
else: | |
nn.init.constant_(param.data, 0) | |
model.apply(init_weights) | |
optimizer = optim.Adam(model.parameters()) | |
def count_parameters(model: nn.Module): | |
return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
print(f'The model has {count_parameters(model):,} trainable parameters') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment