Created
August 21, 2014 21:35
-
-
Save ntessore/d8a84f964132426bca9b to your computer and use it in GitHub Desktop.
SVDLIBC support module for Eigen
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef EIGEN_SVDLIBCSUPPORT_H | |
#define EIGEN_SVDLIBCSUPPORT_H | |
#include <Eigen/Sparse> | |
namespace Eigen | |
{ | |
namespace svdlib_h | |
{ | |
extern "C" | |
{ | |
#include <svdlib.h> | |
} | |
} | |
class SVDLIBC | |
{ | |
public: | |
typedef double Scalar; | |
typedef long Index; | |
typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType; | |
typedef Matrix<Scalar, Dynamic, 1> VectorType; | |
typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> DenseMatrixType; | |
typedef Map<VectorType> SingularValuesType; | |
typedef Map<DenseMatrixType> MatrixUType; | |
typedef Map<DenseMatrixType> MatrixVType; | |
SVDLIBC() | |
: m_svdRec(0), | |
m_singularValues(0, 0), | |
m_matrixU(0, 0, 0), | |
m_matrixV(0, 0, 0) | |
{ | |
_setDefault(); | |
} | |
SVDLIBC(const MatrixType& A) | |
: m_svdRec(0), | |
m_singularValues(0, 0), | |
m_matrixU(0, 0, 0), | |
m_matrixV(0, 0, 0) | |
{ | |
_setDefault(); | |
compute(A); | |
} | |
~SVDLIBC() | |
{ | |
if(m_svdRec) | |
svdlib_h::svdFreeSVDRec(m_svdRec); | |
} | |
ComputationInfo info() const | |
{ | |
return m_info; | |
} | |
SVDLIBC& compute(const MatrixType& A); | |
int rank() const | |
{ | |
eigen_assert(m_svdRec && "SVDLIBC is not initialized."); | |
return m_svdRec->d; | |
} | |
const SingularValuesType& singularValues() const | |
{ | |
eigen_assert(m_svdRec && "SVDLIBC is not initialized."); | |
return m_singularValues; | |
} | |
const MatrixUType& matrixU() | |
{ | |
eigen_assert(m_svdRec && "SVDLIBC is not initialized."); | |
return m_matrixU; | |
} | |
const MatrixVType& matrixV() | |
{ | |
eigen_assert(m_svdRec && "SVDLIBC is not initialized."); | |
return m_matrixV; | |
} | |
long maxIterations() const | |
{ | |
return m_iterations; | |
} | |
SVDLIBC& setMaxIterations(long iterations) | |
{ | |
m_iterations = iterations; | |
return *this; | |
} | |
SVDLIBC& setMaxIterations(Default_t) | |
{ | |
m_iterations = 0; | |
return *this; | |
} | |
long dimensions() const | |
{ | |
return m_dimensions; | |
} | |
SVDLIBC& setDimensions(long dimensions) | |
{ | |
m_dimensions = dimensions; | |
return *this; | |
} | |
SVDLIBC& setDimensions(Default_t) | |
{ | |
m_dimensions = 0; | |
return *this; | |
} | |
double threshold() const | |
{ | |
return m_end[1]; | |
} | |
SVDLIBC& setThreshold(double threshold) | |
{ | |
m_end[0] = -threshold; | |
m_end[1] = threshold; | |
return *this; | |
} | |
SVDLIBC& setThreshold(Default_t) | |
{ | |
m_end[0] = -1E-30; | |
m_end[1] = +1E-30; | |
return *this; | |
} | |
double kappa() const | |
{ | |
return m_kappa; | |
} | |
SVDLIBC& setKappa(double kappa) | |
{ | |
m_kappa = kappa; | |
return *this; | |
} | |
SVDLIBC& setKappa(Default_t) | |
{ | |
m_kappa = 1E-6; | |
return *this; | |
} | |
static int verbosity() | |
{ | |
return svdlib_h::SVDVerbosity; | |
} | |
static int setVerbosity(int verbosity) | |
{ | |
return svdlib_h::SVDVerbosity = verbosity; | |
} | |
private: | |
void _setDefault() | |
{ | |
setDimensions(Default); | |
setMaxIterations(Default); | |
setThreshold(Default); | |
setKappa(Default); | |
} | |
long m_dimensions; | |
long m_iterations; | |
double m_end[2]; | |
double m_kappa; | |
ComputationInfo m_info; | |
svdlib_h::SVDRec m_svdRec; | |
SingularValuesType m_singularValues; | |
MatrixUType m_matrixU; | |
MatrixVType m_matrixV; | |
}; | |
inline SVDLIBC& SVDLIBC::compute(const SVDLIBC::MatrixType& A) | |
{ | |
eigen_assert(A.isCompressed() && "sparse matrix must be compressed"); | |
svdlib_h::smat mA; | |
mA.rows = A.rows(); | |
mA.cols = A.cols(); | |
mA.vals = A.nonZeros(); | |
mA.pointr = const_cast<long*>(A.outerIndexPtr()); | |
mA.rowind = const_cast<long*>(A.innerIndexPtr()); | |
mA.value = const_cast<double*>(A.valuePtr()); | |
if(m_svdRec) | |
svdlib_h::svdFreeSVDRec(m_svdRec); | |
m_svdRec = svdlib_h::svdLAS2(&mA, m_dimensions, m_iterations, m_end, m_kappa); | |
if(!m_svdRec) | |
{ | |
m_info = NumericalIssue; | |
return *this; | |
} | |
new (&m_singularValues) SingularValuesType(m_svdRec->S, m_svdRec->d); | |
new (&m_matrixU) MatrixUType(m_svdRec->Ut->value[0], m_svdRec->Ut->cols, m_svdRec->Ut->rows); | |
new (&m_matrixV) MatrixVType(m_svdRec->Vt->value[0], m_svdRec->Vt->cols, m_svdRec->Ut->rows); | |
m_info = Success; | |
return *this; | |
} | |
} | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment