|
// as seen on : https://www.youtube.com/watch?v=N92w4e-hrA4 |
|
|
|
// using : https://github.com/infusion/Fraction.js/blob/master/fraction.min.js |
|
|
|
function makeLoop( z, c, loop_limit = 7, max_value = 1000000 ) |
|
{ |
|
var loop = [ z ]; |
|
|
|
var calc_func = ( vz, vc ) => vz.mul( vz ).add( vc ); |
|
|
|
var frac_isValid = x => |
|
! isNaN( x.n ) && isFinite( x.n ) && |
|
! isNaN( x.d ) && isFinite( x.d ) ; |
|
|
|
var frac_isExploding = x => x.n > max_value || x.d > max_value; |
|
|
|
var isValid = true; |
|
var loopIndex = 0; |
|
|
|
var current_z = z; |
|
|
|
for( var i = 0; i < loop_limit - 1; ++i ) |
|
{ |
|
var current_z = calc_func( current_z, c ); |
|
|
|
if( frac_isExploding( current_z ) ) |
|
{ |
|
// console.log("explode;break;"); |
|
isValid = false; |
|
break; |
|
} |
|
if( ! frac_isValid( current_z ) ) |
|
{ |
|
// console.log("invalid;break;"); |
|
isValid = false; |
|
break; |
|
} |
|
|
|
var found = loop.find( x => x.equals( current_z ) ); |
|
|
|
if( found !== undefined ) |
|
{ |
|
// console.log("found;break;", loop.indexOf( found ) ); |
|
loopIndex = loop.indexOf( found ); |
|
loop.push( current_z ); |
|
break; |
|
} |
|
|
|
loop.push( current_z ); |
|
} |
|
|
|
return ! isValid ? null : { |
|
constant: c, |
|
max_loop_reached : i == max_loop, |
|
loop_index : loopIndex, |
|
loop_size : (loop.length-1) - loopIndex, |
|
list: loop |
|
}; |
|
} |
|
|
|
function makeLoop2( z_numerator, z_denominator, c_numerator ) |
|
{ |
|
return makeLoop( |
|
new Fraction( z_numerator, z_denominator ), |
|
new Fraction( c_numerator, z_denominator * z_denominator ) |
|
); |
|
} |
|
|
|
function testResult( result ) |
|
{ |
|
if( result == null || result.max_loop_reached ) return; |
|
|
|
// result.loop_size of 0 is self repeating number |
|
// result.loop_size of 1 is dual system |
|
// result.loop_size of 2 is triplets |
|
|
|
//if( result.list.length > 2 ) |
|
if( result.loop_size > 2 ) |
|
{ |
|
var display = `[${result.loop_size}] c = ${result.constant.toFraction()}`; |
|
result.list.forEach( z => display += `\nz = ${z.toFraction()}` ); |
|
console.log( display ); |
|
} |
|
} |
|
|
|
var depth = 14; |
|
var limit_ijk = 99; |
|
var tested = 0; |
|
|
|
for(var i = 1; i < 40; ++i ) |
|
for(var j = 12; j < 32; ++j ) |
|
for(var k = 100; k < 200; ++k ) |
|
{ |
|
testResult( makeLoop2( i , j , k , depth ) ); |
|
testResult( makeLoop2( -i , j , k , depth ) ); |
|
testResult( makeLoop2( i , j , -k , depth ) ); |
|
testResult( makeLoop2( -i , j , -k , depth ) ); |
|
tested += 4; |
|
} |
|
|
|
console.log( "tested count: " + tested ); |
|
|
|
// c = [ -29/16 ] z = [ 1/4 -> -7/4 -> 5/4 -> 1/4 ] |
|
// c = [ -301/144 ] z = [ 19/12 -> 5/12 -> -23/12 -> 19/12 ] |
|
// c = [ -421/144 ] z = [ 17/12 -> -11/12 -> -25/12 -> 17/12 ] |
|
|
|
function test_loop( z, c, count = 5 ) |
|
{ |
|
var func = ( z, c ) => z.mul( z ).add( c ); |
|
|
|
console.log( `Starting at z=${z.toFraction()} c=${c.toFraction()}` ); |
|
|
|
for( var i = 0; i < count; ++i ) |
|
{ |
|
z = func( z, c ); |
|
console.log( `step[${i+2}]: z=${z.toFraction()}` ); |
|
} |
|
} |
|
|
|
test_loop( new Fraction(5,4), new Fraction(-29,16), 4 ); |
|
// Starting at z=5/4 c=-29/16 |
|
// step[2]: z=-1/4 |
|
// step[3]: z=-7/4 |
|
// step[4]: z=5/4 |
I found a lot of example cases. My biggest one is:
z, c = 54833/2964, -3178199389/8785296
-57875/2964
57799/2964
54833/2964
https://pastebin.com/1xBFv08N
I manage to make a really efficient algo because i looked at all the 3 iteration examples and i figure the following.
d = (b^2 - a^2)/(c - b)
a, b and c are the numerator cases for z fractions. d is de denominator for z fractions.
What you can conclude is that d and (c - b) are both dividers from n. This makes that you can generate this n value with prime values. When you have all prime factors for n you also can efficiently find all dividers for n. Like you can make d and (c - b) combinations.
Also with the prime factors for n you can make all a and b combinations.
Last part if you want to generate the c fraction you do this:
b*d - (a^2) / d*d
Basicly with this method you reduce your search space a lot to find valid z and c fractions
Here is the project: http://gitlab.ludoruisch.nl/root/Fraction-Iteration