-
-
Save nwithan8/0de051a1605db354f227848fb5f9d7c1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import collections | |
import math | |
import os | |
import cv2 | |
import numpy as np | |
import time | |
MAX_LINES = 4000 | |
N_PINS = 36*8 | |
MIN_LOOP = 20 # To avoid getting stuck in a loop | |
MIN_DISTANCE = 20 # To avoid very short lines | |
LINE_WEIGHT = 15 # Tweakable parameter | |
FILENAME = "leki-lig.jpg" | |
SCALE = 25 # For making a very high resolution render, to attempt to accurately gauge how thick the thread must be | |
HOOP_DIAMETER = 0.625 # To calculate total thread length | |
tic = time.perf_counter() | |
img = cv2.imread(FILENAME, cv2.IMREAD_GRAYSCALE) | |
# Didn't bother to make it work for non-square images | |
assert img.shape[0] == img.shape[1] | |
length = img.shape[0] | |
def disp(image): | |
cv2.imshow('image', image) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
# Cut away everything around a central circle | |
X,Y = np.ogrid[0:length, 0:length] | |
circlemask = (X - length/2) ** 2 + (Y - length/2) ** 2 > length/2 * length/2 | |
img[circlemask] = 0xFF | |
pin_coords = [] | |
center = length / 2 | |
radius = length / 2 - 1/2 | |
# Precalculate the coordinates of every pin | |
for i in range(N_PINS): | |
angle = 2 * math.pi * i / N_PINS | |
pin_coords.append((math.floor(center + radius * math.cos(angle)), | |
math.floor(center + radius * math.sin(angle)))) | |
line_cache_y = [None] * N_PINS * N_PINS | |
line_cache_x = [None] * N_PINS * N_PINS | |
line_cache_weight = [1] * N_PINS * N_PINS # Turned out to be unnecessary, unused | |
line_cache_length = [0] * N_PINS * N_PINS | |
print("Precalculating all lines... ", end='', flush=True) | |
for a in range(N_PINS): | |
for b in range(a + MIN_DISTANCE, N_PINS): | |
x0 = pin_coords[a][0] | |
y0 = pin_coords[a][1] | |
x1 = pin_coords[b][0] | |
y1 = pin_coords[b][1] | |
d = int(math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0)*(y1 - y0))) | |
#d = max(abs(y1-y0), abs(x1-x0)) inf-norm | |
# A proper (slower) Bresenham does not give any better result *shrug* | |
xs = np.linspace(x0, x1, d, dtype=int) | |
ys = np.linspace(y0, y1, d, dtype=int) | |
line_cache_y[b*N_PINS + a] = ys | |
line_cache_y[a*N_PINS + b] = ys | |
line_cache_x[b*N_PINS + a] = xs | |
line_cache_x[a*N_PINS + b] = xs | |
line_cache_length[b*N_PINS + a] = d | |
line_cache_length[a*N_PINS + b] = d | |
print("done") | |
error = np.ones(img.shape) * 0xFF - img.copy() | |
img_result = np.ones(img.shape) * 0xFF | |
lse_buffer = np.ones(img.shape) * 0xFF # Used in the unused LSE algorithm | |
result = np.ones((img.shape[0] * SCALE, img.shape[1] * SCALE), np.uint8) * 0xFF | |
line_mask = np.zeros(img.shape, np.float64) # XXX | |
line_sequence = [] | |
pin = 0 | |
line_sequence.append(pin) | |
thread_length = 0 | |
last_pins = collections.deque(maxlen = MIN_LOOP) | |
for l in range(MAX_LINES): | |
if l % 100 == 0: | |
print("%d " % l, end='', flush=True) | |
img_result = cv2.resize(result, img.shape, interpolation=cv2.INTER_AREA) | |
# Some trickery to fast calculate the absolute difference, to estimate the error per pixel | |
diff = img_result - img | |
mul = np.uint8(img_result < img) * 254 + 1 | |
absdiff = diff * mul | |
print(absdiff.sum() / (length * length)) | |
max_err = -math.inf | |
best_pin = -1 | |
# Find the line which will lower the error the most | |
for offset in range(MIN_DISTANCE, N_PINS - MIN_DISTANCE): | |
test_pin = (pin + offset) % N_PINS | |
if test_pin in last_pins: | |
continue | |
xs = line_cache_x[test_pin * N_PINS + pin] | |
ys = line_cache_y[test_pin * N_PINS + pin] | |
# Simple | |
# Error defined as the sum of the brightness of each pixel in the original | |
# The idea being that a wire can only darken pixels in the result | |
line_err = np.sum(error[ys,xs]) * line_cache_weight[test_pin*N_PINS + pin] | |
''' | |
# LSE Unused | |
goal_pixels = img[ys, xs] | |
old_pixels = lse_buffer[ys, xs] | |
new_pixels = np.clip(old_pixels - LINE_WEIGHT * line_cache_weight[test_pin*N_PINS + pin], 0, 255) | |
line_err = np.sum((old_pixels - goal_pixels) ** 2) - np.sum((new_pixels - goal_pixels) ** 2) | |
#LSE | |
''' | |
if line_err > max_err: | |
max_err = line_err | |
best_pin = test_pin | |
line_sequence.append(best_pin) | |
xs = line_cache_x[best_pin * N_PINS + pin] | |
ys = line_cache_y[best_pin * N_PINS + pin] | |
weight = LINE_WEIGHT * line_cache_weight[best_pin*N_PINS + pin] | |
''' | |
#LSE | |
old_pixels = lse_buffer[ys, xs] | |
new_pixels = np.clip(old_pixels - weight, 0, 255) | |
lse_buffer[ys, xs] = new_pixels | |
#LSE | |
''' | |
# Subtract the line from the error | |
line_mask.fill(0) | |
line_mask[ys, xs] = weight | |
error = error - line_mask | |
error.clip(0, 255) | |
# Draw the line in the result | |
cv2.line(result, | |
(pin_coords[pin][0] * SCALE, pin_coords[pin][1] * SCALE), | |
(pin_coords[best_pin][0] * SCALE, pin_coords[best_pin][1] * SCALE), | |
color=0, thickness=4, lineType=8) | |
x0 = pin_coords[pin][0] | |
y0 = pin_coords[pin][1] | |
x1 = pin_coords[best_pin][0] | |
y1 = pin_coords[best_pin][1] | |
# Calculate physical distance | |
dist = math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0)*(y1 - y0)) | |
thread_length += HOOP_DIAMETER / length * dist | |
last_pins.append(best_pin) | |
pin = best_pin | |
img_result = cv2.resize(result, img.shape, interpolation=cv2.INTER_AREA) | |
diff = img_result - img | |
mul = np.uint8(img_result < img) * 254 + 1 | |
absdiff = diff * mul | |
print(absdiff.sum() / (length * length)) | |
print('\x07') | |
toc = time.perf_counter() | |
print("%.1f seconds" % (toc - tic)) | |
cv2.imwrite(os.path.splitext(FILENAME)[0] + "-out.png", result) | |
with open(os.path.splitext(FILENAME)[0] + ".json", "w") as f: | |
f.write(str(line_sequence)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment