Created
November 10, 2016 09:16
-
-
Save nyk510/84b38176f701243918f4dc498f7775ba to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
# In[3]: | |
from chainer import Chain | |
from chainer import Variable,optimizers | |
import chainer.functions as F | |
import chainer.links as L | |
# In[2]: | |
import matplotlib.pyplot as plt | |
import numpy as np | |
get_ipython().magic('matplotlib inline') | |
# In[194]: | |
class Generator(Chain): | |
'''ランダムなベクトルから画像を生成する画像作成機 | |
''' | |
def __init__(self,z_dim): | |
super(Generator,self).__init__( | |
l1 = L.Linear(z_dim,3*3*512), | |
dc1 = L.Deconvolution2D(512, 256, 2, stride=2, pad=1,), | |
dc2 = L.Deconvolution2D(256, 128, 2, stride=2, pad=1,), | |
dc3 = L.Deconvolution2D(128, 64, 2, stride=2, pad=1,), | |
dc4 = L.Deconvolution2D(64, 1, 3, stride=3, pad=1), | |
# bn0 = L.BatchNormalization(6*6*512), | |
bn1 = L.BatchNormalization(512), | |
bn2 = L.BatchNormalization(256), | |
bn3 = L.BatchNormalization(128), | |
bn4 = L.BatchNormalization(64), | |
) | |
def __call__(self,z, test=False): | |
h = self.l1(z) | |
# 512チャンネルをもつ、6×6のベクトルに変換する | |
h = F.reshape(h,(z.data.shape[0], 512, 3, 3)) | |
h = F.relu(self.bn1(h, test=test)) | |
h = F.relu(self.bn2(self.dc1(h),test=test)) | |
h = F.relu(self.bn3(self.dc2(h), test=test)) | |
h = F.relu(self.bn4(self.dc3(h), test=test)) | |
x = self.dc4(h) | |
return x | |
# In[195]: | |
class Descriminator(Chain): | |
def __init__(self,): | |
super(Descriminator,self).__init__( | |
c1 = L.Convolution2D(1, 64, 3, stride=3, pad=1, ), | |
c2 = L.Convolution2D(64, 128, 2, stride=2, pad=1,), | |
c3 = L.Convolution2D(128, 256, 2, stride=2, pad=1,), | |
c4 = L.Convolution2D(256, 512, 2, stride=2, pad=1,), | |
l1 = L.Linear(3*3*512, 2), | |
bn1 = L.BatchNormalization(128), | |
bn2 = L.BatchNormalization(256), | |
bn3 = L.BatchNormalization(512), | |
) | |
def __call__(self,x,test=False): | |
h = F.relu(self.c1(x)) | |
h = F.relu(self.bn1(self.c2(h), test=test)) | |
h = F.relu(self.bn2(self.c3(h), test=test)) | |
h = F.relu(self.bn3(self.c4(h), test=test)) | |
y = self.l1(h) | |
return y | |
# In[196]: | |
z_dim = 100 | |
gn = Generator(z_dim=z_dim) | |
dc = Descriminator() | |
z = np.random.normal(size=1000,loc=10).reshape(10,-1).astype(np.float32) | |
z = Variable(z) | |
x = gn(z) | |
print(x.shape) | |
y = dc(x) | |
# In[187]: | |
x.shape | |
# In[188]: | |
y.data | |
# In[114]: | |
from sklearn.datasets import fetch_mldata | |
# In[115]: | |
data = fetch_mldata('MNIST original') | |
# In[118]: | |
X = data['data'] | |
X = np.array(X, dtype=np.float32) | |
X /= 256. | |
# In[120]: | |
X.shape | |
# In[123]: | |
784 ** .5 | |
# In[266]: | |
n_train = X.shape[0] | |
epochs = 1 | |
batchsize = 1000 | |
# In[267]: | |
X = X.reshape(n_train,1, 28,28) | |
# In[268]: | |
import pandas as pd | |
df_log = pd.DataFrame() | |
# In[269]: | |
x_data.shape | |
# In[307]: | |
z_dim = 100 | |
gn = Generator(z_dim=z_dim) | |
dc = Descriminator() | |
o_gen = optimizers.Adam(beta1=.5) | |
o_dis = optimizers.Adam(beta1=.5) | |
o_gen.setup(gn) | |
o_dis.setup(dc) | |
# In[ ]: | |
for epoch in range(epochs): | |
perm = np.random.permutation(n_train) | |
sum_loss_of_dis = np.float32(0) | |
sum_loss_of_gen = np.float32(0) | |
for i in range(int(n_train/batchsize)): | |
print('iter {i}'.format(**locals())) | |
# load true data form dataset | |
x_data = X[i*batchsize:(i+1)*batchsize] | |
x_data = Variable(x_data) | |
z = np.random.uniform(-1,1,(batchsize, z_dim)) | |
z = z.astype(dtype=np.float32) | |
z = Variable(z) | |
x = gn(z) | |
y1 = dc(x) | |
# 答え合わせ | |
# ジェネレーターとしては0と判別させたい(騙すことが目的) | |
loss_gen = F.softmax_cross_entropy(y1, Variable(np.zeros(batchsize, dtype=np.int32))) | |
# 判別機としては1(偽物)と判別したい | |
loss_dis = F.softmax_cross_entropy(y1, Variable(np.ones(batchsize, dtype=np.int32))) | |
# 正しい画像に対しても | |
y2 = dc(x_data) | |
# 今度は正しい画像なので、0(正しい画像)と判別したい | |
loss_dis += F.softmax_cross_entropy(y2, Variable(np.zeros(batchsize, dtype=np.int32))) | |
o_gen.zero_grads() | |
loss_gen.backward() | |
o_gen.update() | |
o_dis.zero_grads() | |
loss_dis.backward() | |
o_dis.update() | |
sum_loss_of_dis += loss_dis.data | |
sum_loss_of_gen += loss_gen.data | |
print('loss\tdis-{sum_loss_of_dis}_gen-{sum_loss_of_gen}'.format(**locals())) | |
# In[274]: | |
plt.imshow(x_data[0].data.reshape(28,28)) | |
# In[298]: | |
z = Variable(np.random.uniform(-1,1,1000).reshape(-1,100).astype(np.float32)) | |
x = gn(z) | |
y = dc(x) | |
x = x.data | |
x = X[perm[:10]] | |
# In[299]: | |
x = x.reshape(-1,28,28) | |
# In[300]: | |
for i,xx in enumerate(x): | |
plt.subplot(4,4,i+1) | |
plt.imshow(xx) | |
# In[301]: | |
y.data | |
# In[305]: | |
x.shape | |
# In[306]: | |
dc(Variable(x.reshape(-1,1,28,28))).data | |
# In[ ]: | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment