Created
November 10, 2019 10:43
-
-
Save nyk510/996a6e149415464bd8902e01d1180970 to your computer and use it in GitHub Desktop.
PRML Section3 Figure3.5
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
def gaussian_kernel(x, basis=None): | |
if basis is None: | |
basis = np.linspace(-1.2, 1.2, 101) | |
# parameter is my choice >_< | |
phi = np.exp(- (x.reshape(-1, 1) - basis) ** 2 * 250) | |
# add bias basis | |
phi = np.hstack([phi, np.ones_like(phi[:, 0]).reshape(-1, 1)]) | |
return phi | |
def estimate_ml_weight(x, t, lam, xx): | |
basis = np.linspace(0, 1, 24) | |
phi = gaussian_kernel(x, basis=basis) | |
w_ml = np.linalg.inv(phi.T.dot(phi) + lam * np.eye(len(basis) + 1)).dot(phi.T).dot(t) | |
xx_phi = gaussian_kernel(xx, basis=basis) | |
pred = xx_phi.dot(w_ml) | |
return pred | |
n_samples = 100 | |
fig, axes = plt.subplots(ncols=2, nrows=3, figsize=(10, 12), sharey=True, sharex=True) | |
for i, l in enumerate([2.6, -.31, -2.4]): | |
ax = axes[i] | |
preds = [] | |
for n in range(n_samples): | |
x = np.random.uniform(0, 1, 40) | |
xx = np.linspace(0, 1, 101) | |
t = np.sin(x * 2 * np.pi) + .2 * np.random.normal(size=len(x)) | |
pred = estimate_ml_weight(x, t, lam=np.exp(l), xx=xx) | |
if n < 20: | |
ax[0].plot(xx, pred, c='black', alpha=.8, linewidth=1) | |
preds.append(pred) | |
ax[1].plot(xx, np.sin(2 * xx * np.pi), c='black', label=f'Lambda = {l}') | |
ax[1].plot(xx, np.mean(preds, axis=0), '--', c='black') | |
ax[1].legend() | |
fig.tight_layout() | |
fig.savefig('bias_variance.png', dpi=120) |
Author
nyk510
commented
Nov 10, 2019
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment