Created
March 31, 2017 11:50
-
-
Save oak-tree/49fcbee1d2ecfb11c78b1b64bafc9a76 to your computer and use it in GitHub Desktop.
mnist_with_digit_limit_parameter
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| '''Train a Siamese MLP on pairs of digits from the MNIST dataset. | |
| It follows Hadsell-et-al.'06 [1] by computing the Euclidean distance on the | |
| output of the shared network and by optimizing the contrastive loss (see paper | |
| for mode details). | |
| [1] "Dimensionality Reduction by Learning an Invariant Mapping" | |
| http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf | |
| Gets to 99.5% test accuracy after 20 epochs. | |
| 3 seconds per epoch on a Titan X GPU | |
| ''' | |
| from __future__ import absolute_import | |
| from __future__ import print_function | |
| import numpy as np | |
| import random | |
| from keras.datasets import mnist | |
| from keras.models import Sequential, Model | |
| from keras.layers import Dense, Dropout, Input, Lambda | |
| from keras.optimizers import RMSprop | |
| from keras import backend as K | |
| def euclidean_distance(vects): | |
| x, y = vects | |
| return K.sqrt(K.sum(K.square(x - y), axis=1, keepdims=True)) | |
| def eucl_dist_output_shape(shapes): | |
| shape1, shape2 = shapes | |
| return (shape1[0], 1) | |
| def contrastive_loss(y_true, y_pred): | |
| '''Contrastive loss from Hadsell-et-al.'06 | |
| http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf | |
| ''' | |
| margin = 1 | |
| return K.mean(y_true * K.square(y_pred) + | |
| (1 - y_true) * K.square(K.maximum(margin - y_pred, 0))) | |
| limit_digit=4 | |
| def create_pairs(x, digit_indices): | |
| '''Positive and negative pair creation. | |
| Alternates between positive and negative pairs. | |
| ''' | |
| pairs = [] | |
| labels = [] | |
| n = min([len(digit_indices[d]) for d in range(limit_digit)]) - 1 | |
| for d in range(limit_digit): | |
| for i in range(n): | |
| z1, z2 = digit_indices[d][i], digit_indices[d][i + 1] | |
| pairs += [[x[z1], x[z2]]] | |
| inc = random.randrange(1, limit_digit) | |
| dn = (d + inc) % limit_digit | |
| z1, z2 = digit_indices[d][i], digit_indices[dn][i] | |
| pairs += [[x[z1], x[z2]]] | |
| labels += [1, 0] | |
| return np.array(pairs), np.array(labels) | |
| def create_base_network(input_dim): | |
| '''Base network to be shared (eq. to feature extraction). | |
| ''' | |
| seq = Sequential() | |
| seq.add(Dense(128, input_shape=(input_dim,), activation='relu')) | |
| seq.add(Dropout(0.1)) | |
| seq.add(Dense(128, activation='relu')) | |
| seq.add(Dropout(0.1)) | |
| seq.add(Dense(128, activation='relu')) | |
| return seq | |
| def compute_accuracy(predictions, labels): | |
| '''Compute classification accuracy with a fixed threshold on distances. | |
| ''' | |
| return labels[predictions.ravel() < 0.5].mean() | |
| # the data, shuffled and split between train and test sets | |
| (x_train, y_train), (x_test, y_test) = mnist.load_data() | |
| x_train = x_train.reshape(60000, 784) | |
| x_test = x_test.reshape(10000, 784) | |
| x_train = x_train.astype('float32') | |
| x_test = x_test.astype('float32') | |
| x_train /= 255 | |
| x_test /= 255 | |
| input_dim = 784 | |
| epochs = 20 | |
| # create training+test positive and negative pairs | |
| digit_indices = [np.where(y_train == i)[0] for i in range(limit_digit)] | |
| tr_pairs, tr_y = create_pairs(x_train, digit_indices) | |
| digit_indices = [np.where(y_test == i)[0] for i in range(limit_digit)] | |
| te_pairs, te_y = create_pairs(x_test, digit_indices) | |
| # network definition | |
| base_network = create_base_network(input_dim) | |
| input_a = Input(shape=(input_dim,)) | |
| input_b = Input(shape=(input_dim,)) | |
| # because we re-use the same instance `base_network`, | |
| # the weights of the network | |
| # will be shared across the two branches | |
| processed_a = base_network(input_a) | |
| processed_b = base_network(input_b) | |
| distance = Lambda(euclidean_distance, | |
| output_shape=eucl_dist_output_shape)([processed_a, processed_b]) | |
| model = Model([input_a, input_b], distance) | |
| # train | |
| rms = RMSprop() | |
| model.compile(loss=contrastive_loss, optimizer=rms) | |
| model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, | |
| batch_size=128, | |
| epochs=epochs, | |
| validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)) | |
| # compute final accuracy on training and test sets | |
| pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) | |
| tr_acc = compute_accuracy(pred, tr_y) | |
| pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) | |
| te_acc = compute_accuracy(pred, te_y) | |
| print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc)) | |
| print('* Accuracy on test set: %0.2f%%' % (100 * te_acc)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment