-
-
Save oarriaga/50e1c68e24b03708bd0ffb74d5b335a9 to your computer and use it in GitHub Desktop.
SSD prior box creation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pickle | |
import numpy as np | |
import pdb | |
img_width, img_height = 300, 300 | |
box_configs = [ | |
{'layer_width': 38, 'layer_height': 38, 'num_prior': 3, 'min_size': 30.0, | |
'max_size': None, 'aspect_ratios': [1.0, 2.0, 1/2.0]}, | |
{'layer_width': 19, 'layer_height': 19, 'num_prior': 6, 'min_size': 60.0, | |
'max_size': 114.0, 'aspect_ratios': [1.0, 1.0, 2.0, 1/2.0, 3.0, 1/3.0]}, | |
{'layer_width': 10, 'layer_height': 10, 'num_prior': 6, 'min_size': 114.0, | |
'max_size': 168.0, 'aspect_ratios': [1.0, 1.0, 2.0, 1/2.0, 3.0, 1/3.0]}, | |
{'layer_width': 5, 'layer_height': 5, 'num_prior': 6, 'min_size': 168.0, | |
'max_size': 222.0, 'aspect_ratios': [1.0, 1.0, 2.0, 1/2.0, 3.0, 1/3.0]}, | |
{'layer_width': 3, 'layer_height': 3, 'num_prior': 6, 'min_size': 222.0, | |
'max_size': 276.0, 'aspect_ratios': [1.0, 1.0, 2.0, 1/2.0, 3.0, 1/3.0]}, | |
{'layer_width': 1, 'layer_height': 1, 'num_prior': 6, 'min_size': 276.0, | |
'max_size': 330.0, 'aspect_ratios': [1.0, 1.0, 2.0, 1/2.0, 3.0, 1/3.0]}, | |
] | |
variance = [0.1, 0.1, 0.2, 0.2] | |
boxes_paras = [] | |
def create_prior_box(): | |
for layer_config in box_configs: | |
layer_width, layer_height = layer_config["layer_width"], layer_config["layer_height"] | |
num_priors = layer_config["num_prior"] | |
aspect_ratios = layer_config["aspect_ratios"] | |
min_size = layer_config["min_size"] | |
max_size = layer_config["max_size"] | |
step_x = float(img_width) / float(layer_width) | |
step_y = float(img_height) / float(layer_height) | |
linx = np.linspace(0.5 * step_x, img_width - 0.5 * step_x, layer_width) | |
liny = np.linspace(0.5 * step_y, img_height - 0.5 * step_y, layer_height) | |
centers_x, centers_y = np.meshgrid(linx, liny) | |
centers_x = centers_x.reshape(-1, 1) | |
centers_y = centers_y.reshape(-1, 1) | |
assert(num_priors == len(aspect_ratios)) | |
prior_boxes = np.concatenate((centers_x, centers_y), axis=1) | |
prior_boxes = np.tile(prior_boxes, (1, 2 * num_priors)) | |
box_widths = [] | |
box_heights = [] | |
for ar in aspect_ratios: | |
if ar == 1 and len(box_widths) == 0: | |
box_widths.append(min_size) | |
box_heights.append(min_size) | |
elif ar == 1 and len(box_widths) > 0: | |
box_widths.append(np.sqrt(min_size * max_size)) | |
box_heights.append(np.sqrt(min_size * max_size)) | |
elif ar != 1: | |
box_widths.append(min_size * np.sqrt(ar)) | |
box_heights.append(min_size / np.sqrt(ar)) | |
box_widths = 0.5 * np.array(box_widths) | |
box_heights = 0.5 * np.array(box_heights) | |
# Normalize to 0-1 | |
prior_boxes[:, ::4] -= box_widths | |
prior_boxes[:, 1::4] -= box_heights | |
prior_boxes[:, 2::4] += box_widths | |
prior_boxes[:, 3::4] += box_heights | |
prior_boxes[:, ::2] /= img_width | |
prior_boxes[:, 1::2] /= img_height | |
prior_boxes = prior_boxes.reshape(-1, 4) | |
# clip to 0-1 | |
prior_boxes = np.minimum(np.maximum(prior_boxes, 0.0), 1.0) | |
piror_variances = np.tile(variance, (len(prior_boxes),1)) | |
boxes_para = np.concatenate((prior_boxes, piror_variances), axis=1) | |
boxes_paras.append(boxes_para) | |
return np.concatenate(boxes_paras, axis=0) | |
if __name__ == "__main__": | |
boxes_paras = create_prior_box() | |
priors = pickle.load(open('../Datasets/ExtraData/prior_boxes_ssd300.pkl', 'rb')) | |
diff = boxes_paras - priors | |
# pdb.set_trace() | |
print("simi {}, max value {}, min value {}".format(diff.shape, diff.max(), diff.min())) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment