Last active
January 22, 2021 14:03
-
-
Save odashi/8d21f8fc23c075cd3042 to your computer and use it in GitHub Desktop.
Training and generation processes for neural encoder-decoder machine translation.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
import datetime | |
import sys | |
import math | |
import numpy as np | |
from argparse import ArgumentParser | |
from collections import defaultdict | |
from chainer import FunctionSet, Variable, functions, optimizers | |
from chainer import cuda | |
def trace(*args): | |
print(datetime.datetime.now(), '...', *args, file=sys.stderr) | |
sys.stderr.flush() | |
class Vocabulary: | |
def __init__(self): | |
pass | |
def __len__(self): | |
return self.__size | |
def stoi(self, s): | |
return self.__stoi[s] | |
def itos(self, i): | |
return self.__itos[i] | |
@staticmethod | |
def new(line_gen, size): | |
self = Vocabulary() | |
self.__size = size | |
word_freq = defaultdict(lambda: 0) | |
for line in line_gen: | |
words = line.split() | |
for word in words: | |
word_freq[word] += 1 | |
self.__stoi = defaultdict(lambda: 0) | |
self.__stoi['<unk>'] = 0 | |
self.__stoi['<s>'] = 1 | |
self.__stoi['</s>'] = 2 | |
self.__itos = [''] * self.__size | |
self.__itos[0] = '<unk>' | |
self.__itos[1] = '<s>' | |
self.__itos[2] = '</s>' | |
for i, (k, v) in zip(range(self.__size - 3), sorted(word_freq.items(), key=lambda x: -x[1])): | |
self.__stoi[k] = i + 3 | |
self.__itos[i + 3] = k | |
return self | |
def save(self, fp): | |
print(self.__size, file=fp) | |
for i in range(self.__size): | |
print(self.__itos[i], file=fp) | |
@staticmethod | |
def load(line_gen): | |
self = Vocabulary() | |
self.__size = int(next(line_gen)) | |
self.__stoi = defaultdict(lambda: 0) | |
self.__itos = [''] * self.__size | |
for i in range(self.__size): | |
s = next(line_gen).strip() | |
if s: | |
self.__stoi[s] = i | |
self.__itos[i] = s | |
return self | |
class wrapper: | |
@staticmethod | |
def make_var(array, dtype=np.float32): | |
#return Variable(np.array(array, dtype=dtype)) | |
return Variable(cuda.to_gpu(np.array(array, dtype=dtype))) | |
@staticmethod | |
def get_data(variable): | |
#return variable.data | |
return cuda.to_cpu(variable.data) | |
@staticmethod | |
def zeros(shape, dtype=np.float32): | |
#return Variable(np.zeros(shape, dtype=dtype)) | |
return Variable(cuda.zeros(shape, dtype=dtype)) | |
@staticmethod | |
def make_model(**kwargs): | |
#return FunctionSet(**kwargs) | |
return FunctionSet(**kwargs).to_gpu() | |
class EncoderDecoderModel: | |
def __init__(self): | |
pass | |
def __new_opt(self): | |
#return optimizers.SGD(lr=0.01) | |
return optimizers.AdaGrad(lr=0.01) | |
def __to_cpu(self): | |
self.__model.to_cpu() | |
self.__opt = self.__new_opt() | |
self.__opt.setup(self.__model) | |
def __to_gpu(self): | |
self.__model.to_gpu() | |
self.__opt = self.__new_opt() | |
self.__opt.setup(self.__model) | |
def __make_model(self): | |
self.__model = wrapper.make_model( | |
# encoder | |
w_xi = functions.EmbedID(len(self.__src_vocab), self.__n_src_embed), | |
w_ip = functions.Linear(self.__n_src_embed, 4 * self.__n_hidden), | |
w_pp = functions.Linear(self.__n_hidden, 4 * self.__n_hidden), | |
# decoder | |
w_pq = functions.Linear(self.__n_hidden, 4 * self.__n_hidden), | |
w_qj = functions.Linear(self.__n_hidden, self.__n_trg_embed), | |
w_jy = functions.Linear(self.__n_trg_embed, len(self.__trg_vocab)), | |
w_yq = functions.EmbedID(len(self.__trg_vocab), 4 * self.__n_hidden), | |
w_qq = functions.Linear(self.__n_hidden, 4 * self.__n_hidden), | |
) | |
self.__to_gpu() | |
@staticmethod | |
def new(src_vocab, trg_vocab, n_src_embed, n_trg_embed, n_hidden): | |
self = EncoderDecoderModel() | |
self.__src_vocab = src_vocab | |
self.__trg_vocab = trg_vocab | |
self.__n_src_embed = n_src_embed | |
self.__n_trg_embed = n_trg_embed | |
self.__n_hidden = n_hidden | |
self.__make_model() | |
return self | |
def save(self, fp): | |
vtos = lambda v: ' '.join('%.8e' % x for x in v) | |
fprint = lambda x: print(x, file=fp) | |
def print_embed(f): | |
for row in f.W: fprint(vtos(row)) | |
def print_linear(f): | |
for row in f.W: fprint(vtos(row)) | |
fprint(vtos(f.b)) | |
self.__src_vocab.save(fp) | |
self.__trg_vocab.save(fp) | |
fprint(self.__n_src_embed) | |
fprint(self.__n_trg_embed) | |
fprint(self.__n_hidden) | |
self.__to_cpu() | |
print_embed(self.__model.w_xi) | |
print_linear(self.__model.w_ip) | |
print_linear(self.__model.w_pp) | |
print_linear(self.__model.w_pq) | |
print_linear(self.__model.w_qj) | |
print_linear(self.__model.w_jy) | |
print_embed(self.__model.w_yq) | |
print_linear(self.__model.w_qq) | |
self.__to_gpu() | |
@staticmethod | |
def load(line_gen): | |
loadv = lambda tp: [tp(x) for x in next(line_gen).split()] | |
def copyv(tp, row): | |
data = loadv(tp) | |
for i in range(len(data)): | |
row[i] = data[i] | |
def copy_embed(f): | |
for row in f.W: copyv(float, row) | |
def copy_linear(f): | |
for row in f.W: copyv(float, row) | |
copyv(float, f.b) | |
self = EncoderDecoderModel() | |
self.__src_vocab = Vocabulary.load(line_gen) | |
self.__trg_vocab = Vocabulary.load(line_gen) | |
self.__n_src_embed = loadv(int)[0] | |
self.__n_trg_embed = loadv(int)[0] | |
self.__n_hidden = loadv(int)[0] | |
self.__make_model() | |
self.__to_cpu() | |
copy_embed(self.__model.w_xi) | |
copy_linear(self.__model.w_ip) | |
copy_linear(self.__model.w_pp) | |
copy_linear(self.__model.w_pq) | |
copy_linear(self.__model.w_qj) | |
copy_linear(self.__model.w_jy) | |
copy_embed(self.__model.w_yq) | |
copy_linear(self.__model.w_qq) | |
self.__to_gpu() | |
return self | |
def __predict(self, is_training, src_batch, trg_batch = None, generation_limit = None): | |
m = self.__model | |
tanh = functions.tanh | |
lstm = functions.lstm | |
batch_size = len(src_batch) | |
src_len = len(src_batch[0]) | |
src_stoi = self.__src_vocab.stoi | |
trg_stoi = self.__trg_vocab.stoi | |
trg_itos = self.__trg_vocab.itos | |
s_c = wrapper.zeros((batch_size, self.__n_hidden)) | |
# encoding | |
s_x = wrapper.make_var([src_stoi('</s>') for _ in range(batch_size)], dtype=np.int32) | |
s_i = tanh(m.w_xi(s_x)) | |
s_c, s_p = lstm(s_c, m.w_ip(s_i)) | |
for l in reversed(range(src_len)): | |
s_x = wrapper.make_var([src_stoi(src_batch[k][l]) for k in range(batch_size)], dtype=np.int32) | |
s_i = tanh(m.w_xi(s_x)) | |
s_c, s_p = lstm(s_c, m.w_ip(s_i) + m.w_pp(s_p)) | |
s_c, s_q = lstm(s_c, m.w_pq(s_p)) | |
hyp_batch = [[] for _ in range(batch_size)] | |
# decoding | |
if is_training: | |
accum_loss = wrapper.zeros(()) | |
trg_len = len(trg_batch[0]) | |
for l in range(trg_len): | |
s_j = tanh(m.w_qj(s_q)) | |
r_y = m.w_jy(s_j) | |
s_t = wrapper.make_var([trg_stoi(trg_batch[k][l]) for k in range(batch_size)], dtype=np.int32) | |
accum_loss += functions.softmax_cross_entropy(r_y, s_t) | |
output = wrapper.get_data(r_y).argmax(1) | |
for k in range(batch_size): | |
hyp_batch[k].append(trg_itos(output[k])) | |
#s_y = wrapper.make_var(output, dtype=np.int32) | |
#s_c, s_q = lstm(s_c, m.w_yq(s_y) + m.w_qq(s_q)) | |
s_c, s_q = lstm(s_c, m.w_yq(s_t) + m.w_qq(s_q)) | |
return hyp_batch, accum_loss | |
else: | |
while len(hyp_batch[0]) < generation_limit: | |
s_j = tanh(m.w_qj(s_q)) | |
r_y = m.w_jy(s_j) | |
output = wrapper.get_data(r_y).argmax(1) | |
for k in range(batch_size): | |
hyp_batch[k].append(trg_itos(output[k])) | |
if all(hyp_batch[k][-1] == '</s>' for k in range(batch_size)): break | |
s_y = wrapper.make_var(output, dtype=np.int32) | |
s_c, s_q = lstm(s_c, m.w_yq(s_y) + m.w_qq(s_q)) | |
return hyp_batch | |
def train(self, src_batch, trg_batch): | |
self.__opt.zero_grads() | |
hyp_batch, accum_loss = self.__predict(True, src_batch, trg_batch=trg_batch) | |
accum_loss.backward() | |
self.__opt.clip_grads(10) | |
self.__opt.update() | |
return hyp_batch, wrapper.get_data(accum_loss).reshape(()) | |
def predict(self, src_batch, generation_limit): | |
return self.__predict(False, src_batch, generation_limit=generation_limit) | |
def parse_args(): | |
def_vocab = 32768 | |
def_embed_in = 256 | |
def_embed_out = 256 | |
def_hidden = 512 | |
def_epoch = 100 | |
def_minibatch = 256 | |
def_generation_limit = 256 | |
p = ArgumentParser(description='Encoder-decoder trainslation model trainer') | |
p.add_argument('mode', help='\'train\' or \'test\'') | |
p.add_argument('source', help='[in] source corpus') | |
p.add_argument('target', help='[in/out] target corpus') | |
p.add_argument('model', help='[in/out] model file') | |
p.add_argument('--vocab', default=def_vocab, metavar='INT', type=int, | |
help='vocabulary size (default: %d)' % def_vocab) | |
p.add_argument('--embed-in', default=def_embed_in, metavar='INT', type=int, | |
help='input embedding layer size (default: %d)' % def_embed_in) | |
p.add_argument('--embed-out', default=def_embed_out, metavar='INT', type=int, | |
help='output embedding layer size (default: %d)' % def_embed_out) | |
p.add_argument('--hidden', default=def_hidden, metavar='INT', type=int, | |
help='hidden layer size (default: %d)' % def_hidden) | |
p.add_argument('--epoch', default=def_epoch, metavar='INT', type=int, | |
help='number of training epoch (default: %d)' % def_epoch) | |
p.add_argument('--minibatch', default=def_minibatch, metavar='INT', type=int, | |
help='minibatch size (default: %d)' % def_minibatch) | |
p.add_argument('--generation-limit', default=def_generation_limit, metavar='INT', type=int, | |
help='maximum number of words to be generated for test input') | |
args = p.parse_args() | |
# check args | |
try: | |
if args.mode not in ['train', 'test']: raise ValueError('you must set mode = \'train\' or \'test\'') | |
if args.vocab < 1: raise ValueError('you must set --vocab >= 1') | |
if args.embed_in < 1: raise ValueError('you must set --embed-in >= 1') | |
if args.embed_out < 1: raise ValueError('you must set --embed-out >= 1') | |
if args.hidden < 1: raise ValueError('you must set --hidden >= 1') | |
if args.epoch < 1: raise ValueError('you must set --epoch >= 1') | |
if args.minibatch < 1: raise ValueError('you must set --minibatch >= 1') | |
if args.generation_limit < 1: raise ValueError('you must set --generation-limit >= 1') | |
except Exception as ex: | |
p.print_usage(file=sys.stderr) | |
print(ex, file=sys.stderr) | |
sys.exit() | |
return args | |
def generate_parallel_sorted(src_filename, trg_filename, batch_size): | |
with open(src_filename) as fsrc, open(trg_filename) as ftrg: | |
batch = [] | |
try: | |
while True: | |
for i in range(batch_size): | |
batch.append((next(fsrc).split(), next(ftrg).split())) | |
batch = sorted(batch, key=lambda x: len(x[1])) | |
for src, trg in batch: | |
yield src, trg | |
batch = [] | |
except StopIteration: | |
if batch: | |
batch = sorted(batch, key=lambda x: len(x[1])) | |
for src, trg in batch: | |
yield src, trg | |
except: | |
raise | |
def normalize_batch(batch): | |
max_len = max(len(x) for x in batch) | |
return [x + ['</s>'] * (max_len - len(x) + 1) for x in batch] | |
def generate_train_minibatch(src_filename, trg_filename, batch_size): | |
gen = iter(generate_parallel_sorted(src_filename, trg_filename, batch_size * 100)) | |
src_batch = [] | |
trg_batch = [] | |
try: | |
while True: | |
for i in range(batch_size): | |
src, trg = next(gen) | |
src_batch.append(src) | |
trg_batch.append(trg) | |
yield normalize_batch(src_batch), normalize_batch(trg_batch) | |
src_batch = [] | |
trg_batch = [] | |
except StopIteration: | |
if src_batch and len(src_batch) == len(trg_batch): | |
yield normalize_batch(src_batch), normalize_batch(trg_batch) | |
except: | |
raise | |
def generate_test_minibatch(src_filename, batch_size): | |
with open(src_filename) as fsrc: | |
batch = [] | |
try: | |
while True: | |
for i in range(batch_size): | |
batch.append(next(fsrc).split()) | |
yield normalize_batch(batch) | |
batch = [] | |
except StopIteration: | |
if batch: | |
yield normalize_batch(batch) | |
except: | |
raise | |
def train_model(args): | |
trace('making vocaburaries ...') | |
with open(args.source) as fp: src_vocab = Vocabulary.new(fp, args.vocab) | |
with open(args.target) as fp: trg_vocab = Vocabulary.new(fp, args.vocab) | |
trace('start training ...') | |
model = EncoderDecoderModel.new(src_vocab, trg_vocab, args.embed_in, args.embed_out, args.hidden) | |
for epoch in range(args.epoch): | |
trace('epoch %d/%d: ' % (epoch + 1, args.epoch)) | |
log_ppl = 0.0 | |
trained = 0 | |
for src_batch, trg_batch in generate_train_minibatch(args.source, args.target, args.minibatch): | |
hyp_batch, loss = model.train(src_batch, trg_batch) | |
K = len(src_batch) | |
for k in range(K): | |
trace('epoch %3d/%3d, sample %8d' % (epoch + 1, args.epoch, trained + k + 1)) | |
trace(' src = ' + ' '.join([x if x != '</s>' else '*' for x in src_batch[k]])) | |
trace(' trg = ' + ' '.join([x if x != '</s>' else '*' for x in trg_batch[k]])) | |
trace(' hyp = ' + ' '.join([x if x != '</s>' else '*' for x in hyp_batch[k]])) | |
trained += K | |
with open(args.model + '.%03d' % (epoch + 1), 'w') as fp: model.save(fp) | |
trace('finished.') | |
def test_model(args): | |
trace('loading model ...') | |
with open(args.model) as fp: model = EncoderDecoderModel.load(fp) | |
trace('generating translation ...') | |
generated = 0 | |
with open(args.target, 'w') as fp: | |
for src_batch in generate_test_minibatch(args.source, args.minibatch): | |
K = len(src_batch) | |
trace('sample %8d - %8d ...' % (generated + 1, generated + K)) | |
hyp_batch = model.predict(src_batch, args.generation_limit) | |
for hyp in hyp_batch: | |
hyp.append('</s>') | |
hyp = hyp[:hyp.index('</s>')] | |
print(' '.join(hyp), file=fp) | |
generated += K | |
trace('finished.') | |
def main(): | |
args = parse_args() | |
trace('initializing CUDA ...') | |
cuda.init() | |
if args.mode == 'train': train_model(args) | |
elif args.mode == 'test': test_model(args) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment