Last active
December 27, 2015 08:59
-
-
Save oddskool/7300982 to your computer and use it in GitHub Desktop.
Benchmark SGD prediction time with dense/sparse coefficients. invoke with $ kernprof.py -l sparsity_benchmark.py && python -m line_profiler sparsity_benchmark.py.lprof
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.sparse.csr import csr_matrix | |
import sys | |
import numpy as np | |
from scipy.sparse.base import issparse | |
from sklearn.linear_model.stochastic_gradient import SGDRegressor | |
from sklearn.metrics import r2_score | |
np.random.seed(42) | |
n_samples, n_features = 300, 30 | |
X = np.random.randn(n_samples, n_features) | |
coef = 3 * np.random.randn(n_features) | |
inds = np.arange(n_features) | |
np.random.shuffle(inds) | |
coef[inds[n_features/1.2:]] = 0 # sparsify coef | |
y = np.dot(X, coef) | |
print "true coeff", coef.shape | |
# add noise | |
y += 0.01 * np.random.normal((n_samples,)) | |
# Split data in train set and test set | |
n_samples = X.shape[0] | |
X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] | |
X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] | |
############################################################################### | |
clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=False, n_iter=2000) | |
clf.fit(X_train, y_train) | |
@profile | |
def benchmark_dense_predict(): | |
for _ in range(1000): | |
clf.predict(X_test) | |
@profile | |
def benchmark_sparse_predict(): | |
for _ in range(1000): | |
clf.predict(X_test) | |
def score(y_test, y_pred, case): | |
r2 = r2_score(y_test, y_pred) | |
print("r^2 on test data (%s) : %f" % (case, r2)) | |
print "learned coeffs:", clf.coef_.shape | |
print "coeffs sparse ?", issparse(clf.coef_) | |
score(y_test, clf.predict(X_test), 'dense model') | |
benchmark_dense_predict() | |
clf.sparsify() | |
print "sparsed coeffs:", clf.coef_.shape | |
print "coeffs sparse ?", issparse(clf.coef_) | |
score(y_test, clf.predict(X_test), 'sparse model') | |
benchmark_sparse_predict() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment